Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data

Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2019-08, Vol.91 (16), p.10800-10807
Hauptverfasser: Samanipour, Saer, O’Brien, Jake W, Reid, Malcolm J, Thomas, Kevin V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10807
container_issue 16
container_start_page 10800
container_title Analytical chemistry (Washington)
container_volume 91
creator Samanipour, Saer
O’Brien, Jake W
Reid, Malcolm J
Thomas, Kevin V
description Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated limitations in the currently used methods. Recent studies have indicated the limitations of the currently used methods for feature detection of LC-HRMS data. To overcome these limitations, we propose a self-adjusting feature detection (SAFD) algorithm for the processing of profile data from LC-HRMS. SAFD fits a three-dimensional Gaussian into the profile data of a feature, without data preprocessing (i.e., centroiding and/or binning). We tested SAFD on 55 LC-HRMS chromatograms from which 44 were composite wastewater influent samples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We further validated SAFD by comparing its results with those produced via XCMS implemented through MZmine. In terms of ISs and the unknown features, SAFD produced lower rates of false detection (i.e., ≤ 5% and ≤10%, respectively) when compared to XCMS (≤11% and ≤28%, respectively). We also observed higher reproducibility in the feature area generated by SAFD algorithm versus XCMS.
doi_str_mv 10.1021/acs.analchem.9b02422
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2279799548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279799548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a459t-c591e5cd298b12e98ebaae88cc18a68e1c85a7e6a5eccd50faca396ed854e50b3</originalsourceid><addsrcrecordid>eNp9kV1P2zAUhi3ENDq2f4CQJa5TbCdO7cuqfEodmwZcRyfOyUeV1MF2hPo79odn1sIlV5bt532OdF5Czjibcyb4JRg_hy30psVhrksmMiGOyIxLwZJcKXFMZoyxNBELxk7IN-83jHHOeP6VnKQ8lTnL9Iz8fcS-pstqM_nQbRu67BvrutAOtLaOhhbpg90GcA0GrOgNQpgc0qt4M6GzW2pretc1Lf2D3vbT_6ef4D19HCPg7IDB7ejKTmMf469RTNfdy9RVdNXGXwi2cTC2O_rb2brroxkCfCdfaug9_jicp-T55vppdZesf93er5brBDKpQ2Kk5ihNJbQquUCtsARApYzhCnKF3CgJC8xBojGVZDUYSHWOlZIZSlamp-Ri7x2dfZnQh2JjJxdX6gshFnqhtcxUpLI9ZZz13mFdjK4bwO0Kzoq3JorYRPHeRHFoIsbOD_KpHLD6CL2vPgJsD7zFPwZ_6vwHqC2b6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279799548</pqid></control><display><type>article</type><title>Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data</title><source>ACS Publications</source><creator>Samanipour, Saer ; O’Brien, Jake W ; Reid, Malcolm J ; Thomas, Kevin V</creator><creatorcontrib>Samanipour, Saer ; O’Brien, Jake W ; Reid, Malcolm J ; Thomas, Kevin V</creatorcontrib><description>Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated limitations in the currently used methods. Recent studies have indicated the limitations of the currently used methods for feature detection of LC-HRMS data. To overcome these limitations, we propose a self-adjusting feature detection (SAFD) algorithm for the processing of profile data from LC-HRMS. SAFD fits a three-dimensional Gaussian into the profile data of a feature, without data preprocessing (i.e., centroiding and/or binning). We tested SAFD on 55 LC-HRMS chromatograms from which 44 were composite wastewater influent samples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We further validated SAFD by comparing its results with those produced via XCMS implemented through MZmine. In terms of ISs and the unknown features, SAFD produced lower rates of false detection (i.e., ≤ 5% and ≤10%, respectively) when compared to XCMS (≤11% and ≤28%, respectively). We also observed higher reproducibility in the feature area generated by SAFD algorithm versus XCMS.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b02422</identifier><identifier>PMID: 31356049</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Analytical chemistry ; Chemistry ; High resolution ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Preprocessing ; Scientific imaging ; Spectroscopy ; Wastewater</subject><ispartof>Analytical chemistry (Washington), 2019-08, Vol.91 (16), p.10800-10807</ispartof><rights>Copyright American Chemical Society Aug 20, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a459t-c591e5cd298b12e98ebaae88cc18a68e1c85a7e6a5eccd50faca396ed854e50b3</citedby><cites>FETCH-LOGICAL-a459t-c591e5cd298b12e98ebaae88cc18a68e1c85a7e6a5eccd50faca396ed854e50b3</cites><orcidid>0000-0001-9336-9656 ; 0000-0001-8270-6979 ; 0000-0002-2155-100X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b02422$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b02422$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31356049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samanipour, Saer</creatorcontrib><creatorcontrib>O’Brien, Jake W</creatorcontrib><creatorcontrib>Reid, Malcolm J</creatorcontrib><creatorcontrib>Thomas, Kevin V</creatorcontrib><title>Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated limitations in the currently used methods. Recent studies have indicated the limitations of the currently used methods for feature detection of LC-HRMS data. To overcome these limitations, we propose a self-adjusting feature detection (SAFD) algorithm for the processing of profile data from LC-HRMS. SAFD fits a three-dimensional Gaussian into the profile data of a feature, without data preprocessing (i.e., centroiding and/or binning). We tested SAFD on 55 LC-HRMS chromatograms from which 44 were composite wastewater influent samples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We further validated SAFD by comparing its results with those produced via XCMS implemented through MZmine. In terms of ISs and the unknown features, SAFD produced lower rates of false detection (i.e., ≤ 5% and ≤10%, respectively) when compared to XCMS (≤11% and ≤28%, respectively). We also observed higher reproducibility in the feature area generated by SAFD algorithm versus XCMS.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>High resolution</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Preprocessing</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Wastewater</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV1P2zAUhi3ENDq2f4CQJa5TbCdO7cuqfEodmwZcRyfOyUeV1MF2hPo79odn1sIlV5bt532OdF5Czjibcyb4JRg_hy30psVhrksmMiGOyIxLwZJcKXFMZoyxNBELxk7IN-83jHHOeP6VnKQ8lTnL9Iz8fcS-pstqM_nQbRu67BvrutAOtLaOhhbpg90GcA0GrOgNQpgc0qt4M6GzW2pretc1Lf2D3vbT_6ef4D19HCPg7IDB7ejKTmMf469RTNfdy9RVdNXGXwi2cTC2O_rb2brroxkCfCdfaug9_jicp-T55vppdZesf93er5brBDKpQ2Kk5ihNJbQquUCtsARApYzhCnKF3CgJC8xBojGVZDUYSHWOlZIZSlamp-Ri7x2dfZnQh2JjJxdX6gshFnqhtcxUpLI9ZZz13mFdjK4bwO0Kzoq3JorYRPHeRHFoIsbOD_KpHLD6CL2vPgJsD7zFPwZ_6vwHqC2b6g</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Samanipour, Saer</creator><creator>O’Brien, Jake W</creator><creator>Reid, Malcolm J</creator><creator>Thomas, Kevin V</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9336-9656</orcidid><orcidid>https://orcid.org/0000-0001-8270-6979</orcidid><orcidid>https://orcid.org/0000-0002-2155-100X</orcidid></search><sort><creationdate>20190820</creationdate><title>Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data</title><author>Samanipour, Saer ; O’Brien, Jake W ; Reid, Malcolm J ; Thomas, Kevin V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a459t-c591e5cd298b12e98ebaae88cc18a68e1c85a7e6a5eccd50faca396ed854e50b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>High resolution</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Preprocessing</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samanipour, Saer</creatorcontrib><creatorcontrib>O’Brien, Jake W</creatorcontrib><creatorcontrib>Reid, Malcolm J</creatorcontrib><creatorcontrib>Thomas, Kevin V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samanipour, Saer</au><au>O’Brien, Jake W</au><au>Reid, Malcolm J</au><au>Thomas, Kevin V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-08-20</date><risdate>2019</risdate><volume>91</volume><issue>16</issue><spage>10800</spage><epage>10807</epage><pages>10800-10807</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated limitations in the currently used methods. Recent studies have indicated the limitations of the currently used methods for feature detection of LC-HRMS data. To overcome these limitations, we propose a self-adjusting feature detection (SAFD) algorithm for the processing of profile data from LC-HRMS. SAFD fits a three-dimensional Gaussian into the profile data of a feature, without data preprocessing (i.e., centroiding and/or binning). We tested SAFD on 55 LC-HRMS chromatograms from which 44 were composite wastewater influent samples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We further validated SAFD by comparing its results with those produced via XCMS implemented through MZmine. In terms of ISs and the unknown features, SAFD produced lower rates of false detection (i.e., ≤ 5% and ≤10%, respectively) when compared to XCMS (≤11% and ≤28%, respectively). We also observed higher reproducibility in the feature area generated by SAFD algorithm versus XCMS.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31356049</pmid><doi>10.1021/acs.analchem.9b02422</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9336-9656</orcidid><orcidid>https://orcid.org/0000-0001-8270-6979</orcidid><orcidid>https://orcid.org/0000-0002-2155-100X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2019-08, Vol.91 (16), p.10800-10807
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_2279799548
source ACS Publications
subjects Algorithms
Analytical chemistry
Chemistry
High resolution
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Preprocessing
Scientific imaging
Spectroscopy
Wastewater
title Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%20Adjusting%20Algorithm%20for%20the%20Nontargeted%20Feature%20Detection%20of%20High%20Resolution%20Mass%20Spectrometry%20Coupled%20with%20Liquid%20Chromatography%20Profile%20Data&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Samanipour,%20Saer&rft.date=2019-08-20&rft.volume=91&rft.issue=16&rft.spage=10800&rft.epage=10807&rft.pages=10800-10807&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b02422&rft_dat=%3Cproquest_cross%3E2279799548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279799548&rft_id=info:pmid/31356049&rfr_iscdi=true