Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data
Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2019-08, Vol.91 (16), p.10800-10807 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10807 |
---|---|
container_issue | 16 |
container_start_page | 10800 |
container_title | Analytical chemistry (Washington) |
container_volume | 91 |
creator | Samanipour, Saer O’Brien, Jake W Reid, Malcolm J Thomas, Kevin V |
description | Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated limitations in the currently used methods. Recent studies have indicated the limitations of the currently used methods for feature detection of LC-HRMS data. To overcome these limitations, we propose a self-adjusting feature detection (SAFD) algorithm for the processing of profile data from LC-HRMS. SAFD fits a three-dimensional Gaussian into the profile data of a feature, without data preprocessing (i.e., centroiding and/or binning). We tested SAFD on 55 LC-HRMS chromatograms from which 44 were composite wastewater influent samples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We further validated SAFD by comparing its results with those produced via XCMS implemented through MZmine. In terms of ISs and the unknown features, SAFD produced lower rates of false detection (i.e., ≤ 5% and ≤10%, respectively) when compared to XCMS (≤11% and ≤28%, respectively). We also observed higher reproducibility in the feature area generated by SAFD algorithm versus XCMS. |
doi_str_mv | 10.1021/acs.analchem.9b02422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2279799548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279799548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a459t-c591e5cd298b12e98ebaae88cc18a68e1c85a7e6a5eccd50faca396ed854e50b3</originalsourceid><addsrcrecordid>eNp9kV1P2zAUhi3ENDq2f4CQJa5TbCdO7cuqfEodmwZcRyfOyUeV1MF2hPo79odn1sIlV5bt532OdF5Czjibcyb4JRg_hy30psVhrksmMiGOyIxLwZJcKXFMZoyxNBELxk7IN-83jHHOeP6VnKQ8lTnL9Iz8fcS-pstqM_nQbRu67BvrutAOtLaOhhbpg90GcA0GrOgNQpgc0qt4M6GzW2pretc1Lf2D3vbT_6ef4D19HCPg7IDB7ejKTmMf469RTNfdy9RVdNXGXwi2cTC2O_rb2brroxkCfCdfaug9_jicp-T55vppdZesf93er5brBDKpQ2Kk5ihNJbQquUCtsARApYzhCnKF3CgJC8xBojGVZDUYSHWOlZIZSlamp-Ri7x2dfZnQh2JjJxdX6gshFnqhtcxUpLI9ZZz13mFdjK4bwO0Kzoq3JorYRPHeRHFoIsbOD_KpHLD6CL2vPgJsD7zFPwZ_6vwHqC2b6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279799548</pqid></control><display><type>article</type><title>Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data</title><source>ACS Publications</source><creator>Samanipour, Saer ; O’Brien, Jake W ; Reid, Malcolm J ; Thomas, Kevin V</creator><creatorcontrib>Samanipour, Saer ; O’Brien, Jake W ; Reid, Malcolm J ; Thomas, Kevin V</creatorcontrib><description>Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated limitations in the currently used methods. Recent studies have indicated the limitations of the currently used methods for feature detection of LC-HRMS data. To overcome these limitations, we propose a self-adjusting feature detection (SAFD) algorithm for the processing of profile data from LC-HRMS. SAFD fits a three-dimensional Gaussian into the profile data of a feature, without data preprocessing (i.e., centroiding and/or binning). We tested SAFD on 55 LC-HRMS chromatograms from which 44 were composite wastewater influent samples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We further validated SAFD by comparing its results with those produced via XCMS implemented through MZmine. In terms of ISs and the unknown features, SAFD produced lower rates of false detection (i.e., ≤ 5% and ≤10%, respectively) when compared to XCMS (≤11% and ≤28%, respectively). We also observed higher reproducibility in the feature area generated by SAFD algorithm versus XCMS.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b02422</identifier><identifier>PMID: 31356049</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Analytical chemistry ; Chemistry ; High resolution ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Preprocessing ; Scientific imaging ; Spectroscopy ; Wastewater</subject><ispartof>Analytical chemistry (Washington), 2019-08, Vol.91 (16), p.10800-10807</ispartof><rights>Copyright American Chemical Society Aug 20, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a459t-c591e5cd298b12e98ebaae88cc18a68e1c85a7e6a5eccd50faca396ed854e50b3</citedby><cites>FETCH-LOGICAL-a459t-c591e5cd298b12e98ebaae88cc18a68e1c85a7e6a5eccd50faca396ed854e50b3</cites><orcidid>0000-0001-9336-9656 ; 0000-0001-8270-6979 ; 0000-0002-2155-100X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b02422$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b02422$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31356049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samanipour, Saer</creatorcontrib><creatorcontrib>O’Brien, Jake W</creatorcontrib><creatorcontrib>Reid, Malcolm J</creatorcontrib><creatorcontrib>Thomas, Kevin V</creatorcontrib><title>Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated limitations in the currently used methods. Recent studies have indicated the limitations of the currently used methods for feature detection of LC-HRMS data. To overcome these limitations, we propose a self-adjusting feature detection (SAFD) algorithm for the processing of profile data from LC-HRMS. SAFD fits a three-dimensional Gaussian into the profile data of a feature, without data preprocessing (i.e., centroiding and/or binning). We tested SAFD on 55 LC-HRMS chromatograms from which 44 were composite wastewater influent samples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We further validated SAFD by comparing its results with those produced via XCMS implemented through MZmine. In terms of ISs and the unknown features, SAFD produced lower rates of false detection (i.e., ≤ 5% and ≤10%, respectively) when compared to XCMS (≤11% and ≤28%, respectively). We also observed higher reproducibility in the feature area generated by SAFD algorithm versus XCMS.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>High resolution</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Preprocessing</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Wastewater</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV1P2zAUhi3ENDq2f4CQJa5TbCdO7cuqfEodmwZcRyfOyUeV1MF2hPo79odn1sIlV5bt532OdF5Czjibcyb4JRg_hy30psVhrksmMiGOyIxLwZJcKXFMZoyxNBELxk7IN-83jHHOeP6VnKQ8lTnL9Iz8fcS-pstqM_nQbRu67BvrutAOtLaOhhbpg90GcA0GrOgNQpgc0qt4M6GzW2pretc1Lf2D3vbT_6ef4D19HCPg7IDB7ejKTmMf469RTNfdy9RVdNXGXwi2cTC2O_rb2brroxkCfCdfaug9_jicp-T55vppdZesf93er5brBDKpQ2Kk5ihNJbQquUCtsARApYzhCnKF3CgJC8xBojGVZDUYSHWOlZIZSlamp-Ri7x2dfZnQh2JjJxdX6gshFnqhtcxUpLI9ZZz13mFdjK4bwO0Kzoq3JorYRPHeRHFoIsbOD_KpHLD6CL2vPgJsD7zFPwZ_6vwHqC2b6g</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Samanipour, Saer</creator><creator>O’Brien, Jake W</creator><creator>Reid, Malcolm J</creator><creator>Thomas, Kevin V</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9336-9656</orcidid><orcidid>https://orcid.org/0000-0001-8270-6979</orcidid><orcidid>https://orcid.org/0000-0002-2155-100X</orcidid></search><sort><creationdate>20190820</creationdate><title>Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data</title><author>Samanipour, Saer ; O’Brien, Jake W ; Reid, Malcolm J ; Thomas, Kevin V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a459t-c591e5cd298b12e98ebaae88cc18a68e1c85a7e6a5eccd50faca396ed854e50b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>High resolution</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Preprocessing</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samanipour, Saer</creatorcontrib><creatorcontrib>O’Brien, Jake W</creatorcontrib><creatorcontrib>Reid, Malcolm J</creatorcontrib><creatorcontrib>Thomas, Kevin V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samanipour, Saer</au><au>O’Brien, Jake W</au><au>Reid, Malcolm J</au><au>Thomas, Kevin V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-08-20</date><risdate>2019</risdate><volume>91</volume><issue>16</issue><spage>10800</spage><epage>10807</epage><pages>10800-10807</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Nontargeted feature detection in data from high resolution mass spectrometry is a challenging task, due to the complex and noisy nature of data sets. Numerous feature detection and preprocessing strategies have been developed in an attempt to tackle this challenge, but recent evidence has indicated limitations in the currently used methods. Recent studies have indicated the limitations of the currently used methods for feature detection of LC-HRMS data. To overcome these limitations, we propose a self-adjusting feature detection (SAFD) algorithm for the processing of profile data from LC-HRMS. SAFD fits a three-dimensional Gaussian into the profile data of a feature, without data preprocessing (i.e., centroiding and/or binning). We tested SAFD on 55 LC-HRMS chromatograms from which 44 were composite wastewater influent samples. Additionally, 51 of 55 samples were spiked with 19 labeled internal standards. We further validated SAFD by comparing its results with those produced via XCMS implemented through MZmine. In terms of ISs and the unknown features, SAFD produced lower rates of false detection (i.e., ≤ 5% and ≤10%, respectively) when compared to XCMS (≤11% and ≤28%, respectively). We also observed higher reproducibility in the feature area generated by SAFD algorithm versus XCMS.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31356049</pmid><doi>10.1021/acs.analchem.9b02422</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9336-9656</orcidid><orcidid>https://orcid.org/0000-0001-8270-6979</orcidid><orcidid>https://orcid.org/0000-0002-2155-100X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2019-08, Vol.91 (16), p.10800-10807 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_journals_2279799548 |
source | ACS Publications |
subjects | Algorithms Analytical chemistry Chemistry High resolution Liquid chromatography Mass spectrometry Mass spectroscopy Preprocessing Scientific imaging Spectroscopy Wastewater |
title | Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%20Adjusting%20Algorithm%20for%20the%20Nontargeted%20Feature%20Detection%20of%20High%20Resolution%20Mass%20Spectrometry%20Coupled%20with%20Liquid%20Chromatography%20Profile%20Data&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Samanipour,%20Saer&rft.date=2019-08-20&rft.volume=91&rft.issue=16&rft.spage=10800&rft.epage=10807&rft.pages=10800-10807&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b02422&rft_dat=%3Cproquest_cross%3E2279799548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279799548&rft_id=info:pmid/31356049&rfr_iscdi=true |