Research on Forward Kinematics of a New Type of Redundant Actuation Parallel Mechanism
According to the equation of redundancy pose of parallel mechanism establishment of redundant actuation, selection problem is sensitive to the initial value of iteration and the calculation speed is slower and the use of the Newton-Raphson iterative method is proposed, which can satisfy the real-tim...
Gespeichert in:
Veröffentlicht in: | Ji xie gong cheng xue bao 2019, Vol.55 (9), p.40 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 40 |
container_title | Ji xie gong cheng xue bao |
container_volume | 55 |
creator | WANG, Qiming |
description | According to the equation of redundancy pose of parallel mechanism establishment of redundant actuation, selection problem is sensitive to the initial value of iteration and the calculation speed is slower and the use of the Newton-Raphson iterative method is proposed, which can satisfy the real-time requirements of the online calculation of Levenberg-Marquardt algorithm (L-M algorithm) improved BP neural network model and off-line training can meet the optimization BP neural network model of Genetic Algorithm based on improved high precision (GA-BP), to solve the new redundancy driven parallel mechanism of initial positive solutions of pose prediction problems. Compared with the commonly used quasi Newton algorithm (BFGS) and the quantitative conjugate gradient algorithm (SCG) based neural network model. The results show that the GA-BP model and the L-M algorithm model in error performance analysis is obviously superior to that of BFGS and SCG quasi Newton algorithm model; L-M algorithm in terms of accuracy slightly inferior to the GA-BP model, GA-BP model and the iteration time is longer, so it is suitable for the high precision posture is offline. |
doi_str_mv | 10.3901/JME.2019.09.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2279797431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279797431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1550-b62722b515aeb956adc35b1a77477af383cf6678f8e1d020f6209dd5234b01db3</originalsourceid><addsrcrecordid>eNotkE1rAjEQhnNoodb23Gug57WTZJPsHkW0X9oWsb2GbD5wZd21yS7iv2_EMi8MA8_MwIPQA4EJK4E8va3mEwqknEBKDldoBFzKTIhC3KDbGHcArJSUjNDP2kWng9nirsWLLhx1sPi9bt1e97WJuPNY4w93xJvTwZ2ntbNDa3Xb46nphwSlvS8ddNO4Bq-c2eq2jvs7dO11E939fx-j78V8M3vJlp_Pr7PpMjOEc8gqQSWlFSdcu6rkQlvDeEW0lLmU2rOCGS-ELHzhiAUKXlAoreWU5RUQW7ExerzcPYTud3CxV7tuCG16qSiVZaqckUQ9XSgTuhiD8-oQ6r0OJ0VAnYWpJEydhSlIyYH9AQysXvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279797431</pqid></control><display><type>article</type><title>Research on Forward Kinematics of a New Type of Redundant Actuation Parallel Mechanism</title><source>Alma/SFX Local Collection</source><creator>WANG, Qiming</creator><creatorcontrib>WANG, Qiming</creatorcontrib><description>According to the equation of redundancy pose of parallel mechanism establishment of redundant actuation, selection problem is sensitive to the initial value of iteration and the calculation speed is slower and the use of the Newton-Raphson iterative method is proposed, which can satisfy the real-time requirements of the online calculation of Levenberg-Marquardt algorithm (L-M algorithm) improved BP neural network model and off-line training can meet the optimization BP neural network model of Genetic Algorithm based on improved high precision (GA-BP), to solve the new redundancy driven parallel mechanism of initial positive solutions of pose prediction problems. Compared with the commonly used quasi Newton algorithm (BFGS) and the quantitative conjugate gradient algorithm (SCG) based neural network model. The results show that the GA-BP model and the L-M algorithm model in error performance analysis is obviously superior to that of BFGS and SCG quasi Newton algorithm model; L-M algorithm in terms of accuracy slightly inferior to the GA-BP model, GA-BP model and the iteration time is longer, so it is suitable for the high precision posture is offline.</description><identifier>ISSN: 0577-6686</identifier><identifier>DOI: 10.3901/JME.2019.09.040</identifier><language>eng</language><publisher>Beijing: Chinese Mechanical Engineering Society (CMES)</publisher><subject>Actuation ; Algorithms ; Error analysis ; Genetic algorithms ; Iterative methods ; Kinematics ; Model accuracy ; Neural networks ; Optimization ; Queuing theory ; Redundancy</subject><ispartof>Ji xie gong cheng xue bao, 2019, Vol.55 (9), p.40</ispartof><rights>Copyright Chinese Mechanical Engineering Society (CMES) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1550-b62722b515aeb956adc35b1a77477af383cf6678f8e1d020f6209dd5234b01db3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>WANG, Qiming</creatorcontrib><title>Research on Forward Kinematics of a New Type of Redundant Actuation Parallel Mechanism</title><title>Ji xie gong cheng xue bao</title><description>According to the equation of redundancy pose of parallel mechanism establishment of redundant actuation, selection problem is sensitive to the initial value of iteration and the calculation speed is slower and the use of the Newton-Raphson iterative method is proposed, which can satisfy the real-time requirements of the online calculation of Levenberg-Marquardt algorithm (L-M algorithm) improved BP neural network model and off-line training can meet the optimization BP neural network model of Genetic Algorithm based on improved high precision (GA-BP), to solve the new redundancy driven parallel mechanism of initial positive solutions of pose prediction problems. Compared with the commonly used quasi Newton algorithm (BFGS) and the quantitative conjugate gradient algorithm (SCG) based neural network model. The results show that the GA-BP model and the L-M algorithm model in error performance analysis is obviously superior to that of BFGS and SCG quasi Newton algorithm model; L-M algorithm in terms of accuracy slightly inferior to the GA-BP model, GA-BP model and the iteration time is longer, so it is suitable for the high precision posture is offline.</description><subject>Actuation</subject><subject>Algorithms</subject><subject>Error analysis</subject><subject>Genetic algorithms</subject><subject>Iterative methods</subject><subject>Kinematics</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Queuing theory</subject><subject>Redundancy</subject><issn>0577-6686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1rAjEQhnNoodb23Gug57WTZJPsHkW0X9oWsb2GbD5wZd21yS7iv2_EMi8MA8_MwIPQA4EJK4E8va3mEwqknEBKDldoBFzKTIhC3KDbGHcArJSUjNDP2kWng9nirsWLLhx1sPi9bt1e97WJuPNY4w93xJvTwZ2ntbNDa3Xb46nphwSlvS8ddNO4Bq-c2eq2jvs7dO11E939fx-j78V8M3vJlp_Pr7PpMjOEc8gqQSWlFSdcu6rkQlvDeEW0lLmU2rOCGS-ELHzhiAUKXlAoreWU5RUQW7ExerzcPYTud3CxV7tuCG16qSiVZaqckUQ9XSgTuhiD8-oQ6r0OJ0VAnYWpJEydhSlIyYH9AQysXvM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>WANG, Qiming</creator><general>Chinese Mechanical Engineering Society (CMES)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>Research on Forward Kinematics of a New Type of Redundant Actuation Parallel Mechanism</title><author>WANG, Qiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1550-b62722b515aeb956adc35b1a77477af383cf6678f8e1d020f6209dd5234b01db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Algorithms</topic><topic>Error analysis</topic><topic>Genetic algorithms</topic><topic>Iterative methods</topic><topic>Kinematics</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Queuing theory</topic><topic>Redundancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, Qiming</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ji xie gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, Qiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Forward Kinematics of a New Type of Redundant Actuation Parallel Mechanism</atitle><jtitle>Ji xie gong cheng xue bao</jtitle><date>2019</date><risdate>2019</risdate><volume>55</volume><issue>9</issue><spage>40</spage><pages>40-</pages><issn>0577-6686</issn><abstract>According to the equation of redundancy pose of parallel mechanism establishment of redundant actuation, selection problem is sensitive to the initial value of iteration and the calculation speed is slower and the use of the Newton-Raphson iterative method is proposed, which can satisfy the real-time requirements of the online calculation of Levenberg-Marquardt algorithm (L-M algorithm) improved BP neural network model and off-line training can meet the optimization BP neural network model of Genetic Algorithm based on improved high precision (GA-BP), to solve the new redundancy driven parallel mechanism of initial positive solutions of pose prediction problems. Compared with the commonly used quasi Newton algorithm (BFGS) and the quantitative conjugate gradient algorithm (SCG) based neural network model. The results show that the GA-BP model and the L-M algorithm model in error performance analysis is obviously superior to that of BFGS and SCG quasi Newton algorithm model; L-M algorithm in terms of accuracy slightly inferior to the GA-BP model, GA-BP model and the iteration time is longer, so it is suitable for the high precision posture is offline.</abstract><cop>Beijing</cop><pub>Chinese Mechanical Engineering Society (CMES)</pub><doi>10.3901/JME.2019.09.040</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0577-6686 |
ispartof | Ji xie gong cheng xue bao, 2019, Vol.55 (9), p.40 |
issn | 0577-6686 |
language | eng |
recordid | cdi_proquest_journals_2279797431 |
source | Alma/SFX Local Collection |
subjects | Actuation Algorithms Error analysis Genetic algorithms Iterative methods Kinematics Model accuracy Neural networks Optimization Queuing theory Redundancy |
title | Research on Forward Kinematics of a New Type of Redundant Actuation Parallel Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Forward%20Kinematics%20of%20a%20New%20Type%20of%20Redundant%20Actuation%20Parallel%20Mechanism&rft.jtitle=Ji%20xie%20gong%20cheng%20xue%20bao&rft.au=WANG,%20Qiming&rft.date=2019&rft.volume=55&rft.issue=9&rft.spage=40&rft.pages=40-&rft.issn=0577-6686&rft_id=info:doi/10.3901/JME.2019.09.040&rft_dat=%3Cproquest_cross%3E2279797431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279797431&rft_id=info:pmid/&rfr_iscdi=true |