Improvement of Low‐Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg‐Vapor Annealing

Materials with high zT over a wide temperature range are essential for thermoelectric applications. n‐Type Mg3Sb2‐based compounds have been shown to achieve high zT at 700 K, but their performance at low temperatures (30 mm has a zT 0.8 at 300 K, which is comparable to commercial thermoelectric mate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-08, Vol.31 (35), p.n/a
Hauptverfasser: Wood, Maxwell, Kuo, Jimmy Jiahong, Imasato, Kazuki, Snyder, Gerald Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 35
container_start_page
container_title Advanced materials (Weinheim)
container_volume 31
creator Wood, Maxwell
Kuo, Jimmy Jiahong
Imasato, Kazuki
Snyder, Gerald Jeffrey
description Materials with high zT over a wide temperature range are essential for thermoelectric applications. n‐Type Mg3Sb2‐based compounds have been shown to achieve high zT at 700 K, but their performance at low temperatures (30 mm has a zT 0.8 at 300 K, which is comparable to commercial thermoelectric materials used at room temperature (n‐type Bi2Te3) while reaching zT 1.4 at 700 K, allowing applications over a wider temperature scale. By developing a novel annealing technique in Mg vapor, the high‐resistance grain boundaries of Mg3Sb1.49Bi0.5Te0.01 can be effectively eliminated. This increases the room‐temperature thermoelectric figure of merit, zT, from 0.3 to 0.8, making it the first real competitor to state‐of‐the‐art Bi2Te3‐based n‐type thermoelectric materials.
doi_str_mv 10.1002/adma.201902337
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2279654185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279654185</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2997-ef5d7229247a6b1f7d787c7d8f9eb51ce7dcc999c093fd4fc6837a66120d110a3</originalsourceid><addsrcrecordid>eNo9kLtOwzAUhi0EEqWwMltiTrGd2I7HUG6VWjG0sBo3titXSRxyaVWmPgISb9gnIVFRl3ORvnN-_T8AtxiNMELkXulcjQjCApEw5GdggCnBQYQEPQcDJEIaCBbFl-CqrtcIIcEQG4DPSV5WfmNyUzTQWzj128P-Z2Hy0lSqaSsDvxfQFVDB2SqcL8lh_9sND47Auc-c7mvbOF_AjeuR7vZDlb6CSVEYlblidQ0urMpqc_Pfh-D9-Wkxfg2mby-TcTIN1kQIHhhLNSdEkIgrtsSWax7zlOvYCrOkODVcp6kQIu2MWB3ZlMVhRzJMkMYYqXAI7o5_OztfrakbufZtVXSSkhAuGI1wTDtKHKmty8xOlpXLVbWTGMk-QtlHKE8RyuRxlpy28A-3x2lG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279654185</pqid></control><display><type>article</type><title>Improvement of Low‐Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg‐Vapor Annealing</title><source>Wiley Online Library</source><creator>Wood, Maxwell ; Kuo, Jimmy Jiahong ; Imasato, Kazuki ; Snyder, Gerald Jeffrey</creator><creatorcontrib>Wood, Maxwell ; Kuo, Jimmy Jiahong ; Imasato, Kazuki ; Snyder, Gerald Jeffrey</creatorcontrib><description>Materials with high zT over a wide temperature range are essential for thermoelectric applications. n‐Type Mg3Sb2‐based compounds have been shown to achieve high zT at 700 K, but their performance at low temperatures (&lt;500 K) is compromised due to their highly resistive grain boundaries. Syntheses and optimization processes to mitigate this grain‐boundary effect has been limited due to loss of Mg, which hinders a sample's n‐type dopability. A Mg‐vapor anneal processing step that grows a sample's grain size and preserves its n‐type carrier concentration during annealing is demonstrated. The electrical conductivity and mobility of the samples with large grain size follows a phonon‐scattering‐dominated T−3/2 trend over a large temperature range, further supporting the conclusion that the temperature‐activated mobility in Mg3Sb2‐based materials is caused by resistive grain boundaries. The measured Hall mobility of electrons reaches 170 cm2 V−1 s−1 in annealed 800 °C sintered Mg3 + δSb1.49Bi0.5Te0.01, the highest ever reported for Mg3Sb2‐based thermoelectric materials. In particular, a sample with grain size &gt;30 mm has a zT 0.8 at 300 K, which is comparable to commercial thermoelectric materials used at room temperature (n‐type Bi2Te3) while reaching zT 1.4 at 700 K, allowing applications over a wider temperature scale. By developing a novel annealing technique in Mg vapor, the high‐resistance grain boundaries of Mg3Sb1.49Bi0.5Te0.01 can be effectively eliminated. This increases the room‐temperature thermoelectric figure of merit, zT, from 0.3 to 0.8, making it the first real competitor to state‐of‐the‐art Bi2Te3‐based n‐type thermoelectric materials.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201902337</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Bismuth tellurides ; Carrier density ; Electrical resistivity ; Electron mobility ; Grain boundaries ; Grain size ; Hall effect ; ionized impurities ; Low temperature ; Materials science ; Mg3Sb2 ; Optimization ; Solid solutions ; Temperature ; Thermoelectric materials ; thermoelectrics ; vapor annealing</subject><ispartof>Advanced materials (Weinheim), 2019-08, Vol.31 (35), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2758-6155 ; 0000-0002-3434-1984 ; 0000-0001-7294-1780 ; 0000-0003-1414-8682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201902337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201902337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wood, Maxwell</creatorcontrib><creatorcontrib>Kuo, Jimmy Jiahong</creatorcontrib><creatorcontrib>Imasato, Kazuki</creatorcontrib><creatorcontrib>Snyder, Gerald Jeffrey</creatorcontrib><title>Improvement of Low‐Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg‐Vapor Annealing</title><title>Advanced materials (Weinheim)</title><description>Materials with high zT over a wide temperature range are essential for thermoelectric applications. n‐Type Mg3Sb2‐based compounds have been shown to achieve high zT at 700 K, but their performance at low temperatures (&lt;500 K) is compromised due to their highly resistive grain boundaries. Syntheses and optimization processes to mitigate this grain‐boundary effect has been limited due to loss of Mg, which hinders a sample's n‐type dopability. A Mg‐vapor anneal processing step that grows a sample's grain size and preserves its n‐type carrier concentration during annealing is demonstrated. The electrical conductivity and mobility of the samples with large grain size follows a phonon‐scattering‐dominated T−3/2 trend over a large temperature range, further supporting the conclusion that the temperature‐activated mobility in Mg3Sb2‐based materials is caused by resistive grain boundaries. The measured Hall mobility of electrons reaches 170 cm2 V−1 s−1 in annealed 800 °C sintered Mg3 + δSb1.49Bi0.5Te0.01, the highest ever reported for Mg3Sb2‐based thermoelectric materials. In particular, a sample with grain size &gt;30 mm has a zT 0.8 at 300 K, which is comparable to commercial thermoelectric materials used at room temperature (n‐type Bi2Te3) while reaching zT 1.4 at 700 K, allowing applications over a wider temperature scale. By developing a novel annealing technique in Mg vapor, the high‐resistance grain boundaries of Mg3Sb1.49Bi0.5Te0.01 can be effectively eliminated. This increases the room‐temperature thermoelectric figure of merit, zT, from 0.3 to 0.8, making it the first real competitor to state‐of‐the‐art Bi2Te3‐based n‐type thermoelectric materials.</description><subject>Annealing</subject><subject>Bismuth tellurides</subject><subject>Carrier density</subject><subject>Electrical resistivity</subject><subject>Electron mobility</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hall effect</subject><subject>ionized impurities</subject><subject>Low temperature</subject><subject>Materials science</subject><subject>Mg3Sb2</subject><subject>Optimization</subject><subject>Solid solutions</subject><subject>Temperature</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><subject>vapor annealing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOwzAUhi0EEqWwMltiTrGd2I7HUG6VWjG0sBo3titXSRxyaVWmPgISb9gnIVFRl3ORvnN-_T8AtxiNMELkXulcjQjCApEw5GdggCnBQYQEPQcDJEIaCBbFl-CqrtcIIcEQG4DPSV5WfmNyUzTQWzj128P-Z2Hy0lSqaSsDvxfQFVDB2SqcL8lh_9sND47Auc-c7mvbOF_AjeuR7vZDlb6CSVEYlblidQ0urMpqc_Pfh-D9-Wkxfg2mby-TcTIN1kQIHhhLNSdEkIgrtsSWax7zlOvYCrOkODVcp6kQIu2MWB3ZlMVhRzJMkMYYqXAI7o5_OztfrakbufZtVXSSkhAuGI1wTDtKHKmty8xOlpXLVbWTGMk-QtlHKE8RyuRxlpy28A-3x2lG</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Wood, Maxwell</creator><creator>Kuo, Jimmy Jiahong</creator><creator>Imasato, Kazuki</creator><creator>Snyder, Gerald Jeffrey</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2758-6155</orcidid><orcidid>https://orcid.org/0000-0002-3434-1984</orcidid><orcidid>https://orcid.org/0000-0001-7294-1780</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid></search><sort><creationdate>20190801</creationdate><title>Improvement of Low‐Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg‐Vapor Annealing</title><author>Wood, Maxwell ; Kuo, Jimmy Jiahong ; Imasato, Kazuki ; Snyder, Gerald Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2997-ef5d7229247a6b1f7d787c7d8f9eb51ce7dcc999c093fd4fc6837a66120d110a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Bismuth tellurides</topic><topic>Carrier density</topic><topic>Electrical resistivity</topic><topic>Electron mobility</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hall effect</topic><topic>ionized impurities</topic><topic>Low temperature</topic><topic>Materials science</topic><topic>Mg3Sb2</topic><topic>Optimization</topic><topic>Solid solutions</topic><topic>Temperature</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><topic>vapor annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Maxwell</creatorcontrib><creatorcontrib>Kuo, Jimmy Jiahong</creatorcontrib><creatorcontrib>Imasato, Kazuki</creatorcontrib><creatorcontrib>Snyder, Gerald Jeffrey</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Maxwell</au><au>Kuo, Jimmy Jiahong</au><au>Imasato, Kazuki</au><au>Snyder, Gerald Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Low‐Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg‐Vapor Annealing</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>31</volume><issue>35</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Materials with high zT over a wide temperature range are essential for thermoelectric applications. n‐Type Mg3Sb2‐based compounds have been shown to achieve high zT at 700 K, but their performance at low temperatures (&lt;500 K) is compromised due to their highly resistive grain boundaries. Syntheses and optimization processes to mitigate this grain‐boundary effect has been limited due to loss of Mg, which hinders a sample's n‐type dopability. A Mg‐vapor anneal processing step that grows a sample's grain size and preserves its n‐type carrier concentration during annealing is demonstrated. The electrical conductivity and mobility of the samples with large grain size follows a phonon‐scattering‐dominated T−3/2 trend over a large temperature range, further supporting the conclusion that the temperature‐activated mobility in Mg3Sb2‐based materials is caused by resistive grain boundaries. The measured Hall mobility of electrons reaches 170 cm2 V−1 s−1 in annealed 800 °C sintered Mg3 + δSb1.49Bi0.5Te0.01, the highest ever reported for Mg3Sb2‐based thermoelectric materials. In particular, a sample with grain size &gt;30 mm has a zT 0.8 at 300 K, which is comparable to commercial thermoelectric materials used at room temperature (n‐type Bi2Te3) while reaching zT 1.4 at 700 K, allowing applications over a wider temperature scale. By developing a novel annealing technique in Mg vapor, the high‐resistance grain boundaries of Mg3Sb1.49Bi0.5Te0.01 can be effectively eliminated. This increases the room‐temperature thermoelectric figure of merit, zT, from 0.3 to 0.8, making it the first real competitor to state‐of‐the‐art Bi2Te3‐based n‐type thermoelectric materials.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201902337</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2758-6155</orcidid><orcidid>https://orcid.org/0000-0002-3434-1984</orcidid><orcidid>https://orcid.org/0000-0001-7294-1780</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-08, Vol.31 (35), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2279654185
source Wiley Online Library
subjects Annealing
Bismuth tellurides
Carrier density
Electrical resistivity
Electron mobility
Grain boundaries
Grain size
Hall effect
ionized impurities
Low temperature
Materials science
Mg3Sb2
Optimization
Solid solutions
Temperature
Thermoelectric materials
thermoelectrics
vapor annealing
title Improvement of Low‐Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg‐Vapor Annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Low%E2%80%90Temperature%20zT%20in%20a%20Mg3Sb2%E2%80%93Mg3Bi2%20Solid%20Solution%20via%20Mg%E2%80%90Vapor%20Annealing&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wood,%20Maxwell&rft.date=2019-08-01&rft.volume=31&rft.issue=35&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201902337&rft_dat=%3Cproquest_wiley%3E2279654185%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279654185&rft_id=info:pmid/&rfr_iscdi=true