An extension of a theorem by Mitjushin and Polterovich to incomplete markets

This paper generalises the Mitjushin–Polterovich theorem to the case of economies with incomplete financial markets where utility functions are of the von-Neumann–Morgenstern type. We thus give a sufficient condition on the joint distribution of the asset payoffs and the endowments which guarantees...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 1998-10, Vol.30 (3), p.285-300
1. Verfasser: Bettzuge, Marc Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 3
container_start_page 285
container_title Journal of mathematical economics
container_volume 30
creator Bettzuge, Marc Oliver
description This paper generalises the Mitjushin–Polterovich theorem to the case of economies with incomplete financial markets where utility functions are of the von-Neumann–Morgenstern type. We thus give a sufficient condition on the joint distribution of the asset payoffs and the endowments which guarantees strict monotonicity of individual demand functions if the utility functions display small relative risk aversion.
doi_str_mv 10.1016/S0304-4068(97)00046-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_227956257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406897000463</els_id><sourcerecordid>36083911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-d65b511c08fd4902b1c95f6832664dfffa735ba4d974933e92ec0cb56db1a3103</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVpoa7Tj1AQObWHbUerlbQ6hRD6J8GhgbRnodXOYrne1VaSTf3tK9vF1x6eBsR7b4YfIe8YfGTA5Kdn4NBUDcj2vVYfAKCRFX9BFqxVvGKCty_J4mJ5Td6ktCkmpaBdkNXtRPFPxin5MNEwUEvzGkPEkXYH-ujzZpfWfqJ26ulT2GaMYe_dmuZA_eTCOG8xIx1t_IU5XZFXg90mfPtvLsnPL59_3H2rVt-_3t_drirXSJ6rXopOMOagHfpGQ90xp8UgW15L2fTDMFjFRWebXqtGc466RgeuE7LvmOUM-JJcn3vnGH7vMGWzCbs4lZWmrpUWshaqmMTZ5GJIKeJg5ujLoQfDwBy5mRM3c4RitDInboaX3MM5F3FGdwkh4mgzumD2hlsO5TkUMa3bMvzxr2guqlthOIBZ57GU3ZzLsODYe4wmOY-Tw95HdNn0wf_nnL8-Ao2G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227956257</pqid></control><display><type>article</type><title>An extension of a theorem by Mitjushin and Polterovich to incomplete markets</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bettzuge, Marc Oliver</creator><creatorcontrib>Bettzuge, Marc Oliver</creatorcontrib><description>This paper generalises the Mitjushin–Polterovich theorem to the case of economies with incomplete financial markets where utility functions are of the von-Neumann–Morgenstern type. We thus give a sufficient condition on the joint distribution of the asset payoffs and the endowments which guarantees strict monotonicity of individual demand functions if the utility functions display small relative risk aversion.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/S0304-4068(97)00046-3</identifier><identifier>CODEN: JMECDA</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Demand functions ; Economic models ; Economic theory ; Incomplete markets ; Mathematical analysis ; Monotonicity ; Risk aversion ; Uniqueness ; Utility functions</subject><ispartof>Journal of mathematical economics, 1998-10, Vol.30 (3), p.285-300</ispartof><rights>1998 Elsevier Science S.A.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-d65b511c08fd4902b1c95f6832664dfffa735ba4d974933e92ec0cb56db1a3103</citedby><cites>FETCH-LOGICAL-c463t-d65b511c08fd4902b1c95f6832664dfffa735ba4d974933e92ec0cb56db1a3103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-4068(97)00046-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeemateco/v_3a30_3ay_3a1998_3ai_3a3_3ap_3a285-300.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bettzuge, Marc Oliver</creatorcontrib><title>An extension of a theorem by Mitjushin and Polterovich to incomplete markets</title><title>Journal of mathematical economics</title><description>This paper generalises the Mitjushin–Polterovich theorem to the case of economies with incomplete financial markets where utility functions are of the von-Neumann–Morgenstern type. We thus give a sufficient condition on the joint distribution of the asset payoffs and the endowments which guarantees strict monotonicity of individual demand functions if the utility functions display small relative risk aversion.</description><subject>Demand functions</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Incomplete markets</subject><subject>Mathematical analysis</subject><subject>Monotonicity</subject><subject>Risk aversion</subject><subject>Uniqueness</subject><subject>Utility functions</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkE9rGzEQxUVpoa7Tj1AQObWHbUerlbQ6hRD6J8GhgbRnodXOYrne1VaSTf3tK9vF1x6eBsR7b4YfIe8YfGTA5Kdn4NBUDcj2vVYfAKCRFX9BFqxVvGKCty_J4mJ5Td6ktCkmpaBdkNXtRPFPxin5MNEwUEvzGkPEkXYH-ujzZpfWfqJ26ulT2GaMYe_dmuZA_eTCOG8xIx1t_IU5XZFXg90mfPtvLsnPL59_3H2rVt-_3t_drirXSJ6rXopOMOagHfpGQ90xp8UgW15L2fTDMFjFRWebXqtGc466RgeuE7LvmOUM-JJcn3vnGH7vMGWzCbs4lZWmrpUWshaqmMTZ5GJIKeJg5ujLoQfDwBy5mRM3c4RitDInboaX3MM5F3FGdwkh4mgzumD2hlsO5TkUMa3bMvzxr2guqlthOIBZ57GU3ZzLsODYe4wmOY-Tw95HdNn0wf_nnL8-Ao2G</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Bettzuge, Marc Oliver</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>19981001</creationdate><title>An extension of a theorem by Mitjushin and Polterovich to incomplete markets</title><author>Bettzuge, Marc Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-d65b511c08fd4902b1c95f6832664dfffa735ba4d974933e92ec0cb56db1a3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Demand functions</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Incomplete markets</topic><topic>Mathematical analysis</topic><topic>Monotonicity</topic><topic>Risk aversion</topic><topic>Uniqueness</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bettzuge, Marc Oliver</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bettzuge, Marc Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extension of a theorem by Mitjushin and Polterovich to incomplete markets</atitle><jtitle>Journal of mathematical economics</jtitle><date>1998-10-01</date><risdate>1998</risdate><volume>30</volume><issue>3</issue><spage>285</spage><epage>300</epage><pages>285-300</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><coden>JMECDA</coden><abstract>This paper generalises the Mitjushin–Polterovich theorem to the case of economies with incomplete financial markets where utility functions are of the von-Neumann–Morgenstern type. We thus give a sufficient condition on the joint distribution of the asset payoffs and the endowments which guarantees strict monotonicity of individual demand functions if the utility functions display small relative risk aversion.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4068(97)00046-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 1998-10, Vol.30 (3), p.285-300
issn 0304-4068
1873-1538
language eng
recordid cdi_proquest_journals_227956257
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Demand functions
Economic models
Economic theory
Incomplete markets
Mathematical analysis
Monotonicity
Risk aversion
Uniqueness
Utility functions
title An extension of a theorem by Mitjushin and Polterovich to incomplete markets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extension%20of%20a%20theorem%20by%20Mitjushin%20and%20Polterovich%20to%20incomplete%20markets&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Bettzuge,%20Marc%20Oliver&rft.date=1998-10-01&rft.volume=30&rft.issue=3&rft.spage=285&rft.epage=300&rft.pages=285-300&rft.issn=0304-4068&rft.eissn=1873-1538&rft.coden=JMECDA&rft_id=info:doi/10.1016/S0304-4068(97)00046-3&rft_dat=%3Cproquest_cross%3E36083911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227956257&rft_id=info:pmid/&rft_els_id=S0304406897000463&rfr_iscdi=true