Derivation of heterogeneous material laws via data-driven principal component expansions

A new data-driven method that generalizes experimentally measured and/or computational generated data sets under different loading paths to build three dimensional nonlinear elastic material law with objectivity under arbitrary loadings using neural networks is proposed. The proposed approach is fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2019-08, Vol.64 (2), p.365-379
Hauptverfasser: Yang, Hang, Guo, Xu, Tang, Shan, Liu, Wing Kam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 2
container_start_page 365
container_title Computational mechanics
container_volume 64
creator Yang, Hang
Guo, Xu
Tang, Shan
Liu, Wing Kam
description A new data-driven method that generalizes experimentally measured and/or computational generated data sets under different loading paths to build three dimensional nonlinear elastic material law with objectivity under arbitrary loadings using neural networks is proposed. The proposed approach is first demonstrated by exploiting the concept of representative volume element (RVE) in the principal strain and stress spaces to numerically generate the data. A computational data-training algorithm on the generalization of these principal space data to three dimensional objective isotropic material laws subjected to arbitrary deformation is given. To validate these data-driven derived material laws, large deformation and buckling analysis of nonlinear elastic solids with reference material models and engineering structure with microstructure are performed. Numerical experiments show that only seven sets of data under different stress loading paths on RVEs are required to reach reasonable accuracy. The requirements for constitutive law such as objectivity are preserved approximately. The consistent tangent modulus is also derived. The proposed approach also shows a great potential to obtain the material law between different scales in the multiscale analysis by pure data.
doi_str_mv 10.1007/s00466-019-01728-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2279482222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592163890</galeid><sourcerecordid>A592163890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-8cd97cc8db0554e96ee28f605633086fc2e8b3709e7643d6c910b51c59568cfb3</originalsourceid><addsrcrecordid>eNp9kctqGzEUhkVpoK7TF-hqoKsuxtFldFuG3BoIFJIUuhOy5owrY0tTSbaTt4_cCZRsIiEOOvq_I-n8CH0leEEwlmcZ406IFhNdl6SqPXxAM9Ix2mJNu49oVrOqlULyT-hzzmuMCVeMz9DvS0h-b4uPoYlD8wcKpLiCAHGXm62tO283zcYecrP3tultsW1fCQjNmHxwfqzHLm7HGCCUBp5GG3Itlk_RyWA3Gb68xjn6dX31ePGjvft5c3txfte6TonSKtdr6Zzql5jzDrQAoGoQmAvGsBKDo6CWTGINUnSsF04TvOTEcc2FcsOSzdG3qe6Y4t8d5GLWcZdCvdJQKnWnaB3vqziRjBz7MUeLSbWyGzA-DLEk6-rsYetd_eHga_6ca0oEUxpX4PsboGoKPJWV3eVsbh_u32rppHUp5pxgMLWBW5ueDcHmaKKZTDTVRPPPRHOoEJugfOz2CtL_d79DvQCTa57K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279482222</pqid></control><display><type>article</type><title>Derivation of heterogeneous material laws via data-driven principal component expansions</title><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Hang ; Guo, Xu ; Tang, Shan ; Liu, Wing Kam</creator><creatorcontrib>Yang, Hang ; Guo, Xu ; Tang, Shan ; Liu, Wing Kam</creatorcontrib><description>A new data-driven method that generalizes experimentally measured and/or computational generated data sets under different loading paths to build three dimensional nonlinear elastic material law with objectivity under arbitrary loadings using neural networks is proposed. The proposed approach is first demonstrated by exploiting the concept of representative volume element (RVE) in the principal strain and stress spaces to numerically generate the data. A computational data-training algorithm on the generalization of these principal space data to three dimensional objective isotropic material laws subjected to arbitrary deformation is given. To validate these data-driven derived material laws, large deformation and buckling analysis of nonlinear elastic solids with reference material models and engineering structure with microstructure are performed. Numerical experiments show that only seven sets of data under different stress loading paths on RVEs are required to reach reasonable accuracy. The requirements for constitutive law such as objectivity are preserved approximately. The consistent tangent modulus is also derived. The proposed approach also shows a great potential to obtain the material law between different scales in the multiscale analysis by pure data.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-019-01728-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Classical and Continuum Physics ; Computation ; Computational Science and Engineering ; Deformation analysis ; Elastic buckling ; Elastic deformation ; Engineering ; Isotropic material ; Laws ; Laws, regulations and rules ; Legislation ; Multiscale analysis ; Neural networks ; Nonlinear analysis ; Original Paper ; Tangent modulus ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2019-08, Vol.64 (2), p.365-379</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Computational Mechanics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-8cd97cc8db0554e96ee28f605633086fc2e8b3709e7643d6c910b51c59568cfb3</citedby><cites>FETCH-LOGICAL-c486t-8cd97cc8db0554e96ee28f605633086fc2e8b3709e7643d6c910b51c59568cfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-019-01728-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-019-01728-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Hang</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><creatorcontrib>Tang, Shan</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><title>Derivation of heterogeneous material laws via data-driven principal component expansions</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A new data-driven method that generalizes experimentally measured and/or computational generated data sets under different loading paths to build three dimensional nonlinear elastic material law with objectivity under arbitrary loadings using neural networks is proposed. The proposed approach is first demonstrated by exploiting the concept of representative volume element (RVE) in the principal strain and stress spaces to numerically generate the data. A computational data-training algorithm on the generalization of these principal space data to three dimensional objective isotropic material laws subjected to arbitrary deformation is given. To validate these data-driven derived material laws, large deformation and buckling analysis of nonlinear elastic solids with reference material models and engineering structure with microstructure are performed. Numerical experiments show that only seven sets of data under different stress loading paths on RVEs are required to reach reasonable accuracy. The requirements for constitutive law such as objectivity are preserved approximately. The consistent tangent modulus is also derived. The proposed approach also shows a great potential to obtain the material law between different scales in the multiscale analysis by pure data.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computation</subject><subject>Computational Science and Engineering</subject><subject>Deformation analysis</subject><subject>Elastic buckling</subject><subject>Elastic deformation</subject><subject>Engineering</subject><subject>Isotropic material</subject><subject>Laws</subject><subject>Laws, regulations and rules</subject><subject>Legislation</subject><subject>Multiscale analysis</subject><subject>Neural networks</subject><subject>Nonlinear analysis</subject><subject>Original Paper</subject><subject>Tangent modulus</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctqGzEUhkVpoK7TF-hqoKsuxtFldFuG3BoIFJIUuhOy5owrY0tTSbaTt4_cCZRsIiEOOvq_I-n8CH0leEEwlmcZ406IFhNdl6SqPXxAM9Ix2mJNu49oVrOqlULyT-hzzmuMCVeMz9DvS0h-b4uPoYlD8wcKpLiCAHGXm62tO283zcYecrP3tultsW1fCQjNmHxwfqzHLm7HGCCUBp5GG3Itlk_RyWA3Gb68xjn6dX31ePGjvft5c3txfte6TonSKtdr6Zzql5jzDrQAoGoQmAvGsBKDo6CWTGINUnSsF04TvOTEcc2FcsOSzdG3qe6Y4t8d5GLWcZdCvdJQKnWnaB3vqziRjBz7MUeLSbWyGzA-DLEk6-rsYetd_eHga_6ca0oEUxpX4PsboGoKPJWV3eVsbh_u32rppHUp5pxgMLWBW5ueDcHmaKKZTDTVRPPPRHOoEJugfOz2CtL_d79DvQCTa57K</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Yang, Hang</creator><creator>Guo, Xu</creator><creator>Tang, Shan</creator><creator>Liu, Wing Kam</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190801</creationdate><title>Derivation of heterogeneous material laws via data-driven principal component expansions</title><author>Yang, Hang ; Guo, Xu ; Tang, Shan ; Liu, Wing Kam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-8cd97cc8db0554e96ee28f605633086fc2e8b3709e7643d6c910b51c59568cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computation</topic><topic>Computational Science and Engineering</topic><topic>Deformation analysis</topic><topic>Elastic buckling</topic><topic>Elastic deformation</topic><topic>Engineering</topic><topic>Isotropic material</topic><topic>Laws</topic><topic>Laws, regulations and rules</topic><topic>Legislation</topic><topic>Multiscale analysis</topic><topic>Neural networks</topic><topic>Nonlinear analysis</topic><topic>Original Paper</topic><topic>Tangent modulus</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hang</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><creatorcontrib>Tang, Shan</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hang</au><au>Guo, Xu</au><au>Tang, Shan</au><au>Liu, Wing Kam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of heterogeneous material laws via data-driven principal component expansions</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>64</volume><issue>2</issue><spage>365</spage><epage>379</epage><pages>365-379</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A new data-driven method that generalizes experimentally measured and/or computational generated data sets under different loading paths to build three dimensional nonlinear elastic material law with objectivity under arbitrary loadings using neural networks is proposed. The proposed approach is first demonstrated by exploiting the concept of representative volume element (RVE) in the principal strain and stress spaces to numerically generate the data. A computational data-training algorithm on the generalization of these principal space data to three dimensional objective isotropic material laws subjected to arbitrary deformation is given. To validate these data-driven derived material laws, large deformation and buckling analysis of nonlinear elastic solids with reference material models and engineering structure with microstructure are performed. Numerical experiments show that only seven sets of data under different stress loading paths on RVEs are required to reach reasonable accuracy. The requirements for constitutive law such as objectivity are preserved approximately. The consistent tangent modulus is also derived. The proposed approach also shows a great potential to obtain the material law between different scales in the multiscale analysis by pure data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-019-01728-w</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2019-08, Vol.64 (2), p.365-379
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2279482222
source Springer Nature - Complete Springer Journals
subjects Algorithms
Analysis
Classical and Continuum Physics
Computation
Computational Science and Engineering
Deformation analysis
Elastic buckling
Elastic deformation
Engineering
Isotropic material
Laws
Laws, regulations and rules
Legislation
Multiscale analysis
Neural networks
Nonlinear analysis
Original Paper
Tangent modulus
Theoretical and Applied Mechanics
title Derivation of heterogeneous material laws via data-driven principal component expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20heterogeneous%20material%20laws%20via%20data-driven%20principal%20component%20expansions&rft.jtitle=Computational%20mechanics&rft.au=Yang,%20Hang&rft.date=2019-08-01&rft.volume=64&rft.issue=2&rft.spage=365&rft.epage=379&rft.pages=365-379&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-019-01728-w&rft_dat=%3Cgale_proqu%3EA592163890%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279482222&rft_id=info:pmid/&rft_galeid=A592163890&rfr_iscdi=true