STRICTIFICATION TENSOR PRODUCT OF 2-CATEGORIES
Given 2-categories C and D, let Lax (C,D) denote the 2-category of lax functors, lax natural transformations and modifications, and [C,D]lnt its full sub-2-category of (strict) 2-functors. We give two isomorphic constructions of a 2-category C × D satisfying Lax (C, Lax(D,E)) ≅ [C × D, E]lnt, hence...
Gespeichert in:
Veröffentlicht in: | Theory and applications of categories 2019-01, Vol.34 (22), p.635 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 635 |
container_title | Theory and applications of categories |
container_volume | 34 |
creator | Nikolić, Branko |
description | Given 2-categories C and D, let Lax (C,D) denote the 2-category of lax functors, lax natural transformations and modifications, and [C,D]lnt its full sub-2-category of (strict) 2-functors. We give two isomorphic constructions of a 2-category C × D satisfying Lax (C, Lax(D,E)) ≅ [C × D, E]lnt, hence generalising the case of the free distributive law 1 × 1. We also discuss dual constructions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2278890681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2278890681</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-95844ff02bb7aee5b56e9162c7d2b6344741769481a55511ca1f62f0849d17c13</originalsourceid><addsrcrecordid>eNotjUFrwjAYQIMg6Nz-Q8FzRr6vyZfkOLpWA8VIG8GbtDU5yJjO6v9fYTu9w4P3ZmwJKIArguOCvYzjRQhEkrRk721oXBFc5YqP4PwuC-Wu9U22b_znoQiZrzLkkyo3vnFl-8rmqfsa49s_V-xQlaHY8tpvpkLNb2DyB7fKSJmSwL7XXYyqVxQtEA76jD3lUmoJmqw00CmlAIYOEmESRtoz6AHyFVv_dW_3688zjo_T5fq8f0_LE6I2xgoykP8Cj9w4Qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278890681</pqid></control><display><type>article</type><title>STRICTIFICATION TENSOR PRODUCT OF 2-CATEGORIES</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Nikolić, Branko</creator><creatorcontrib>Nikolić, Branko</creatorcontrib><description>Given 2-categories C and D, let Lax (C,D) denote the 2-category of lax functors, lax natural transformations and modifications, and [C,D]lnt its full sub-2-category of (strict) 2-functors. We give two isomorphic constructions of a 2-category C × D satisfying Lax (C, Lax(D,E)) ≅ [C × D, E]lnt, hence generalising the case of the free distributive law 1 × 1. We also discuss dual constructions.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Algebra ; Applications ; Mathematical functions ; Mathematical problems ; Tensors</subject><ispartof>Theory and applications of categories, 2019-01, Vol.34 (22), p.635</ispartof><rights>Copyright R. Rosebrugh 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Nikolić, Branko</creatorcontrib><title>STRICTIFICATION TENSOR PRODUCT OF 2-CATEGORIES</title><title>Theory and applications of categories</title><description>Given 2-categories C and D, let Lax (C,D) denote the 2-category of lax functors, lax natural transformations and modifications, and [C,D]lnt its full sub-2-category of (strict) 2-functors. We give two isomorphic constructions of a 2-category C × D satisfying Lax (C, Lax(D,E)) ≅ [C × D, E]lnt, hence generalising the case of the free distributive law 1 × 1. We also discuss dual constructions.</description><subject>Algebra</subject><subject>Applications</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Tensors</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotjUFrwjAYQIMg6Nz-Q8FzRr6vyZfkOLpWA8VIG8GbtDU5yJjO6v9fYTu9w4P3ZmwJKIArguOCvYzjRQhEkrRk721oXBFc5YqP4PwuC-Wu9U22b_znoQiZrzLkkyo3vnFl-8rmqfsa49s_V-xQlaHY8tpvpkLNb2DyB7fKSJmSwL7XXYyqVxQtEA76jD3lUmoJmqw00CmlAIYOEmESRtoz6AHyFVv_dW_3688zjo_T5fq8f0_LE6I2xgoykP8Cj9w4Qg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Nikolić, Branko</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20190101</creationdate><title>STRICTIFICATION TENSOR PRODUCT OF 2-CATEGORIES</title><author>Nikolić, Branko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-95844ff02bb7aee5b56e9162c7d2b6344741769481a55511ca1f62f0849d17c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Applications</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolić, Branko</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolić, Branko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STRICTIFICATION TENSOR PRODUCT OF 2-CATEGORIES</atitle><jtitle>Theory and applications of categories</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>34</volume><issue>22</issue><spage>635</spage><pages>635-</pages><eissn>1201-561X</eissn><abstract>Given 2-categories C and D, let Lax (C,D) denote the 2-category of lax functors, lax natural transformations and modifications, and [C,D]lnt its full sub-2-category of (strict) 2-functors. We give two isomorphic constructions of a 2-category C × D satisfying Lax (C, Lax(D,E)) ≅ [C × D, E]lnt, hence generalising the case of the free distributive law 1 × 1. We also discuss dual constructions.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1201-561X |
ispartof | Theory and applications of categories, 2019-01, Vol.34 (22), p.635 |
issn | 1201-561X |
language | eng |
recordid | cdi_proquest_journals_2278890681 |
source | EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Algebra Applications Mathematical functions Mathematical problems Tensors |
title | STRICTIFICATION TENSOR PRODUCT OF 2-CATEGORIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STRICTIFICATION%20TENSOR%20PRODUCT%20OF%202-CATEGORIES&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Nikoli%C4%87,%20Branko&rft.date=2019-01-01&rft.volume=34&rft.issue=22&rft.spage=635&rft.pages=635-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2278890681%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278890681&rft_id=info:pmid/&rfr_iscdi=true |