A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics

•Smaller errors than Soares method and Noh and Bathe method.•Remarkably improved performance of the non-dissipative case.•True self-starting method without the initial acceleration vector.•Complete and simple control of the full range of numerical dissipation.•Improved efficiency than the central di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2019-09, Vol.195, p.358-372
1. Verfasser: Kim, Wooram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue
container_start_page 358
container_title Engineering structures
container_volume 195
creator Kim, Wooram
description •Smaller errors than Soares method and Noh and Bathe method.•Remarkably improved performance of the non-dissipative case.•True self-starting method without the initial acceleration vector.•Complete and simple control of the full range of numerical dissipation.•Improved efficiency than the central difference method. In this article, a new family of two-stage explicit time integration methods is developed for more effective analyses of linear and nonlinear problems of structural dynamics. The collocation method and special types of difference approximations with adjustable algorithmic parameters are employed to approximate the displacement and velocity vectors in time. The new two-stage explicit method is designed to possess controllable numerical dissipation like many of the recent explicit methods. Interestingly, the period error of the new two-stage explicit method is noticeably decreased when compared with the existing two-stage explicit methods. All improved and preferable features of the new two-stage explicit method are achieved without additional computational costs. Illustrative linear and nonlinear problems are solved numerically by using the new and existing methods, and numerical results are carefully compared to verify the improved performance of the new two-stage explicit method.
doi_str_mv 10.1016/j.engstruct.2019.05.095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2278884748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029619303864</els_id><sourcerecordid>2278884748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f46fa959be1f2815386baf157f8cd05299434899cf619ddc0490dab860ee81d43</originalsourceid><addsrcrecordid>eNqFkMlOwzAQhi0EEmV5BixxThgnTmIfK8QmIXGBs-Xa4-IqjYPtUvr2BAVx5TSH-ZeZj5ArBiUD1t5sShzWKcedyWUFTJbQlCCbI7JgoquLrq7qY7IAxlkBlWxPyVlKGwCohIAF2S_pgHvq9Nb3BxoczftQpKzXSPFr7L3xmWa_ReqHjOuosw8D3WJ-DzbRvc_v1PqU_DgvTBhyDD01etQr3_t8oC5EOl-3i7qn9jBMVSZdkBOn-4SXv_OcvN3fvd4-Fs8vD0-3y-fC1LzOheOt07KRK2SuEqypRbvSjjWdE8ZCU0nJay6kNK5l0loDXILVK9EComCW1-fkes4dY_jYYcpqE3ZxmCpVVXVCCN5xMam6WWViSCmiU2P0Wx0PioH6oaw26o-y-qGsoFET5cm5nJ04PfHpMapkPA4GrY84aW3w_2Z8A_I2jZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278884748</pqid></control><display><type>article</type><title>A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Wooram</creator><creatorcontrib>Kim, Wooram</creatorcontrib><description>•Smaller errors than Soares method and Noh and Bathe method.•Remarkably improved performance of the non-dissipative case.•True self-starting method without the initial acceleration vector.•Complete and simple control of the full range of numerical dissipation.•Improved efficiency than the central difference method. In this article, a new family of two-stage explicit time integration methods is developed for more effective analyses of linear and nonlinear problems of structural dynamics. The collocation method and special types of difference approximations with adjustable algorithmic parameters are employed to approximate the displacement and velocity vectors in time. The new two-stage explicit method is designed to possess controllable numerical dissipation like many of the recent explicit methods. Interestingly, the period error of the new two-stage explicit method is noticeably decreased when compared with the existing two-stage explicit methods. All improved and preferable features of the new two-stage explicit method are achieved without additional computational costs. Illustrative linear and nonlinear problems are solved numerically by using the new and existing methods, and numerical results are carefully compared to verify the improved performance of the new two-stage explicit method.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2019.05.095</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Collocation methods ; Computer applications ; Control methods ; Controllable numerical dissipation ; Dynamic structural analysis ; Explicit time integration ; High-frequency filtering ; Integration ; Linear and non-linear structural dynamics ; Margarine ; Methods ; Numerical dissipation ; Numerical methods ; Small period error ; Stability ; Time integration</subject><ispartof>Engineering structures, 2019-09, Vol.195, p.358-372</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-f46fa959be1f2815386baf157f8cd05299434899cf619ddc0490dab860ee81d43</citedby><cites>FETCH-LOGICAL-c343t-f46fa959be1f2815386baf157f8cd05299434899cf619ddc0490dab860ee81d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engstruct.2019.05.095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Kim, Wooram</creatorcontrib><title>A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics</title><title>Engineering structures</title><description>•Smaller errors than Soares method and Noh and Bathe method.•Remarkably improved performance of the non-dissipative case.•True self-starting method without the initial acceleration vector.•Complete and simple control of the full range of numerical dissipation.•Improved efficiency than the central difference method. In this article, a new family of two-stage explicit time integration methods is developed for more effective analyses of linear and nonlinear problems of structural dynamics. The collocation method and special types of difference approximations with adjustable algorithmic parameters are employed to approximate the displacement and velocity vectors in time. The new two-stage explicit method is designed to possess controllable numerical dissipation like many of the recent explicit methods. Interestingly, the period error of the new two-stage explicit method is noticeably decreased when compared with the existing two-stage explicit methods. All improved and preferable features of the new two-stage explicit method are achieved without additional computational costs. Illustrative linear and nonlinear problems are solved numerically by using the new and existing methods, and numerical results are carefully compared to verify the improved performance of the new two-stage explicit method.</description><subject>Collocation methods</subject><subject>Computer applications</subject><subject>Control methods</subject><subject>Controllable numerical dissipation</subject><subject>Dynamic structural analysis</subject><subject>Explicit time integration</subject><subject>High-frequency filtering</subject><subject>Integration</subject><subject>Linear and non-linear structural dynamics</subject><subject>Margarine</subject><subject>Methods</subject><subject>Numerical dissipation</subject><subject>Numerical methods</subject><subject>Small period error</subject><subject>Stability</subject><subject>Time integration</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQhi0EEmV5BixxThgnTmIfK8QmIXGBs-Xa4-IqjYPtUvr2BAVx5TSH-ZeZj5ArBiUD1t5sShzWKcedyWUFTJbQlCCbI7JgoquLrq7qY7IAxlkBlWxPyVlKGwCohIAF2S_pgHvq9Nb3BxoczftQpKzXSPFr7L3xmWa_ReqHjOuosw8D3WJ-DzbRvc_v1PqU_DgvTBhyDD01etQr3_t8oC5EOl-3i7qn9jBMVSZdkBOn-4SXv_OcvN3fvd4-Fs8vD0-3y-fC1LzOheOt07KRK2SuEqypRbvSjjWdE8ZCU0nJay6kNK5l0loDXILVK9EComCW1-fkes4dY_jYYcpqE3ZxmCpVVXVCCN5xMam6WWViSCmiU2P0Wx0PioH6oaw26o-y-qGsoFET5cm5nJ04PfHpMapkPA4GrY84aW3w_2Z8A_I2jZg</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Kim, Wooram</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20190915</creationdate><title>A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics</title><author>Kim, Wooram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f46fa959be1f2815386baf157f8cd05299434899cf619ddc0490dab860ee81d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collocation methods</topic><topic>Computer applications</topic><topic>Control methods</topic><topic>Controllable numerical dissipation</topic><topic>Dynamic structural analysis</topic><topic>Explicit time integration</topic><topic>High-frequency filtering</topic><topic>Integration</topic><topic>Linear and non-linear structural dynamics</topic><topic>Margarine</topic><topic>Methods</topic><topic>Numerical dissipation</topic><topic>Numerical methods</topic><topic>Small period error</topic><topic>Stability</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Wooram</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Wooram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics</atitle><jtitle>Engineering structures</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>195</volume><spage>358</spage><epage>372</epage><pages>358-372</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•Smaller errors than Soares method and Noh and Bathe method.•Remarkably improved performance of the non-dissipative case.•True self-starting method without the initial acceleration vector.•Complete and simple control of the full range of numerical dissipation.•Improved efficiency than the central difference method. In this article, a new family of two-stage explicit time integration methods is developed for more effective analyses of linear and nonlinear problems of structural dynamics. The collocation method and special types of difference approximations with adjustable algorithmic parameters are employed to approximate the displacement and velocity vectors in time. The new two-stage explicit method is designed to possess controllable numerical dissipation like many of the recent explicit methods. Interestingly, the period error of the new two-stage explicit method is noticeably decreased when compared with the existing two-stage explicit methods. All improved and preferable features of the new two-stage explicit method are achieved without additional computational costs. Illustrative linear and nonlinear problems are solved numerically by using the new and existing methods, and numerical results are carefully compared to verify the improved performance of the new two-stage explicit method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2019.05.095</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2019-09, Vol.195, p.358-372
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_journals_2278884748
source Elsevier ScienceDirect Journals
subjects Collocation methods
Computer applications
Control methods
Controllable numerical dissipation
Dynamic structural analysis
Explicit time integration
High-frequency filtering
Integration
Linear and non-linear structural dynamics
Margarine
Methods
Numerical dissipation
Numerical methods
Small period error
Stability
Time integration
title A new family of two-stage explicit time integration methods with dissipation control capability for structural dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20family%20of%20two-stage%20explicit%20time%20integration%20methods%20with%20dissipation%20control%20capability%20for%20structural%20dynamics&rft.jtitle=Engineering%20structures&rft.au=Kim,%20Wooram&rft.date=2019-09-15&rft.volume=195&rft.spage=358&rft.epage=372&rft.pages=358-372&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2019.05.095&rft_dat=%3Cproquest_cross%3E2278884748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278884748&rft_id=info:pmid/&rft_els_id=S0141029619303864&rfr_iscdi=true