A Generalized Model for the Optimal Operation of Microgrids in Grid-Connected and Islanded Droop-Based Mode
In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introduced, modeling the m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2019-09, Vol.10 (5), p.5032-5045 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5045 |
---|---|
container_issue | 5 |
container_start_page | 5032 |
container_title | IEEE transactions on smart grid |
container_volume | 10 |
creator | Vergara, Pedro P. Rey, Juan M. Lopez, Juan C. Rider, Marcos J. da Silva, Luiz C.P. Shaker, Hamid R. Jorgensen, Bo N. |
description | In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introduced, modeling the microgrid as an unbalanced ac three-phase electrical distribution system, comprising distributed generator (DG) units, battery systems and wind turbines. In GC mode, the frequency and the voltage magnitude references are imposed by the main grid at the point of common couple, while in IS mode, it is assumed that the DG units operate with droop control. Additionally, a set of convexification procedures are introduced in order to approximate the original MINLP model into a new convex formulation that can be solved using commercial solvers. The proposed model has been tested in a 25-bus microgrid for different scenarios, including one where a degradation of the voltage magnitude reference is observed. Results show that the proposed model is able to properly define the operational mode of the microgrid, based on the technical constraints of the system. |
doi_str_mv | 10.1109/TSG.2018.2873411 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2278401093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8478111</ieee_id><sourcerecordid>2278401093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-806dd338549a9ad8abe3756ba5fef6fc44fdd8cd34bbdc64a8bdd29f864994113</originalsourceid><addsrcrecordid>eNo9kMFPwyAYxYnRxGXubuKFxHMnFNrCcU6tS7bs4DwTWkA7a6nQHfSv91u6jMv7CO995P0QuqVkTimRD7u3cp4SKuapKBin9AJNqOQyYSSnl-c5Y9doFuOewGGM5amcoK8FLm1ng26bP2vwxhvbYucDHj4t3vZD861bUDAMje-wd3jT1MF_hMZE3HS4hCFZ-q6z9QB53Rm8ii0IXJ6C933yqONp8Q26crqNdnbSKXp_ed4tX5P1tlwtF-ukTiUdEkFyYxgTGZdaaiN0ZVmR5ZXOnHW5qzl3xojaMF5Vps65FpUxqXQi51JCeTZF9-PePvifg42D2vtD6OBLlaaF4ASQMXCR0QV1YgzWqT5A2_CrKFFHqgqoqiNVdaIKkbsx0lhrz3bBC0Hh9R8WxnMd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278401093</pqid></control><display><type>article</type><title>A Generalized Model for the Optimal Operation of Microgrids in Grid-Connected and Islanded Droop-Based Mode</title><source>IEEE Electronic Library Online</source><creator>Vergara, Pedro P. ; Rey, Juan M. ; Lopez, Juan C. ; Rider, Marcos J. ; da Silva, Luiz C.P. ; Shaker, Hamid R. ; Jorgensen, Bo N.</creator><creatorcontrib>Vergara, Pedro P. ; Rey, Juan M. ; Lopez, Juan C. ; Rider, Marcos J. ; da Silva, Luiz C.P. ; Shaker, Hamid R. ; Jorgensen, Bo N.</creatorcontrib><description>In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introduced, modeling the microgrid as an unbalanced ac three-phase electrical distribution system, comprising distributed generator (DG) units, battery systems and wind turbines. In GC mode, the frequency and the voltage magnitude references are imposed by the main grid at the point of common couple, while in IS mode, it is assumed that the DG units operate with droop control. Additionally, a set of convexification procedures are introduced in order to approximate the original MINLP model into a new convex formulation that can be solved using commercial solvers. The proposed model has been tested in a 25-bus microgrid for different scenarios, including one where a degradation of the voltage magnitude reference is observed. Results show that the proposed model is able to properly define the operational mode of the microgrid, based on the technical constraints of the system.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2018.2873411</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; convex optimization ; Distributed generation ; droop control ; Electric potential ; Electric power distribution ; Electric power grids ; Energy storage ; Frequency control ; grid-connected operation ; islanded operation ; Linear programming ; Mathematical model ; Mathematical models ; Microgrids ; Mixed integer ; Model testing ; Nonlinear programming ; optimal power flow ; Planning ; Reactive power ; Solvers ; Voltage ; Voltage control ; Wind turbines</subject><ispartof>IEEE transactions on smart grid, 2019-09, Vol.10 (5), p.5032-5045</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-806dd338549a9ad8abe3756ba5fef6fc44fdd8cd34bbdc64a8bdd29f864994113</citedby><cites>FETCH-LOGICAL-c291t-806dd338549a9ad8abe3756ba5fef6fc44fdd8cd34bbdc64a8bdd29f864994113</cites><orcidid>0000-0001-5678-6602 ; 0000-0001-5484-1161 ; 0000-0002-5465-4769 ; 0000-0001-5646-8612 ; 0000-0003-2858-8400 ; 0000-0003-0852-0169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8478111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8478111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vergara, Pedro P.</creatorcontrib><creatorcontrib>Rey, Juan M.</creatorcontrib><creatorcontrib>Lopez, Juan C.</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><creatorcontrib>da Silva, Luiz C.P.</creatorcontrib><creatorcontrib>Shaker, Hamid R.</creatorcontrib><creatorcontrib>Jorgensen, Bo N.</creatorcontrib><title>A Generalized Model for the Optimal Operation of Microgrids in Grid-Connected and Islanded Droop-Based Mode</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introduced, modeling the microgrid as an unbalanced ac three-phase electrical distribution system, comprising distributed generator (DG) units, battery systems and wind turbines. In GC mode, the frequency and the voltage magnitude references are imposed by the main grid at the point of common couple, while in IS mode, it is assumed that the DG units operate with droop control. Additionally, a set of convexification procedures are introduced in order to approximate the original MINLP model into a new convex formulation that can be solved using commercial solvers. The proposed model has been tested in a 25-bus microgrid for different scenarios, including one where a degradation of the voltage magnitude reference is observed. Results show that the proposed model is able to properly define the operational mode of the microgrid, based on the technical constraints of the system.</description><subject>Batteries</subject><subject>convex optimization</subject><subject>Distributed generation</subject><subject>droop control</subject><subject>Electric potential</subject><subject>Electric power distribution</subject><subject>Electric power grids</subject><subject>Energy storage</subject><subject>Frequency control</subject><subject>grid-connected operation</subject><subject>islanded operation</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Microgrids</subject><subject>Mixed integer</subject><subject>Model testing</subject><subject>Nonlinear programming</subject><subject>optimal power flow</subject><subject>Planning</subject><subject>Reactive power</subject><subject>Solvers</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Wind turbines</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFPwyAYxYnRxGXubuKFxHMnFNrCcU6tS7bs4DwTWkA7a6nQHfSv91u6jMv7CO995P0QuqVkTimRD7u3cp4SKuapKBin9AJNqOQyYSSnl-c5Y9doFuOewGGM5amcoK8FLm1ng26bP2vwxhvbYucDHj4t3vZD861bUDAMje-wd3jT1MF_hMZE3HS4hCFZ-q6z9QB53Rm8ii0IXJ6C933yqONp8Q26crqNdnbSKXp_ed4tX5P1tlwtF-ukTiUdEkFyYxgTGZdaaiN0ZVmR5ZXOnHW5qzl3xojaMF5Vps65FpUxqXQi51JCeTZF9-PePvifg42D2vtD6OBLlaaF4ASQMXCR0QV1YgzWqT5A2_CrKFFHqgqoqiNVdaIKkbsx0lhrz3bBC0Hh9R8WxnMd</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Vergara, Pedro P.</creator><creator>Rey, Juan M.</creator><creator>Lopez, Juan C.</creator><creator>Rider, Marcos J.</creator><creator>da Silva, Luiz C.P.</creator><creator>Shaker, Hamid R.</creator><creator>Jorgensen, Bo N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5678-6602</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid><orcidid>https://orcid.org/0000-0002-5465-4769</orcidid><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0003-2858-8400</orcidid><orcidid>https://orcid.org/0000-0003-0852-0169</orcidid></search><sort><creationdate>20190901</creationdate><title>A Generalized Model for the Optimal Operation of Microgrids in Grid-Connected and Islanded Droop-Based Mode</title><author>Vergara, Pedro P. ; Rey, Juan M. ; Lopez, Juan C. ; Rider, Marcos J. ; da Silva, Luiz C.P. ; Shaker, Hamid R. ; Jorgensen, Bo N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-806dd338549a9ad8abe3756ba5fef6fc44fdd8cd34bbdc64a8bdd29f864994113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>convex optimization</topic><topic>Distributed generation</topic><topic>droop control</topic><topic>Electric potential</topic><topic>Electric power distribution</topic><topic>Electric power grids</topic><topic>Energy storage</topic><topic>Frequency control</topic><topic>grid-connected operation</topic><topic>islanded operation</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Microgrids</topic><topic>Mixed integer</topic><topic>Model testing</topic><topic>Nonlinear programming</topic><topic>optimal power flow</topic><topic>Planning</topic><topic>Reactive power</topic><topic>Solvers</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vergara, Pedro P.</creatorcontrib><creatorcontrib>Rey, Juan M.</creatorcontrib><creatorcontrib>Lopez, Juan C.</creatorcontrib><creatorcontrib>Rider, Marcos J.</creatorcontrib><creatorcontrib>da Silva, Luiz C.P.</creatorcontrib><creatorcontrib>Shaker, Hamid R.</creatorcontrib><creatorcontrib>Jorgensen, Bo N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vergara, Pedro P.</au><au>Rey, Juan M.</au><au>Lopez, Juan C.</au><au>Rider, Marcos J.</au><au>da Silva, Luiz C.P.</au><au>Shaker, Hamid R.</au><au>Jorgensen, Bo N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalized Model for the Optimal Operation of Microgrids in Grid-Connected and Islanded Droop-Based Mode</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>10</volume><issue>5</issue><spage>5032</spage><epage>5045</epage><pages>5032-5045</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introduced, modeling the microgrid as an unbalanced ac three-phase electrical distribution system, comprising distributed generator (DG) units, battery systems and wind turbines. In GC mode, the frequency and the voltage magnitude references are imposed by the main grid at the point of common couple, while in IS mode, it is assumed that the DG units operate with droop control. Additionally, a set of convexification procedures are introduced in order to approximate the original MINLP model into a new convex formulation that can be solved using commercial solvers. The proposed model has been tested in a 25-bus microgrid for different scenarios, including one where a degradation of the voltage magnitude reference is observed. Results show that the proposed model is able to properly define the operational mode of the microgrid, based on the technical constraints of the system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2018.2873411</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5678-6602</orcidid><orcidid>https://orcid.org/0000-0001-5484-1161</orcidid><orcidid>https://orcid.org/0000-0002-5465-4769</orcidid><orcidid>https://orcid.org/0000-0001-5646-8612</orcidid><orcidid>https://orcid.org/0000-0003-2858-8400</orcidid><orcidid>https://orcid.org/0000-0003-0852-0169</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2019-09, Vol.10 (5), p.5032-5045 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2278401093 |
source | IEEE Electronic Library Online |
subjects | Batteries convex optimization Distributed generation droop control Electric potential Electric power distribution Electric power grids Energy storage Frequency control grid-connected operation islanded operation Linear programming Mathematical model Mathematical models Microgrids Mixed integer Model testing Nonlinear programming optimal power flow Planning Reactive power Solvers Voltage Voltage control Wind turbines |
title | A Generalized Model for the Optimal Operation of Microgrids in Grid-Connected and Islanded Droop-Based Mode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalized%20Model%20for%20the%20Optimal%20Operation%20of%20Microgrids%20in%20Grid-Connected%20and%20Islanded%20Droop-Based%20Mode&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Vergara,%20Pedro%20P.&rft.date=2019-09-01&rft.volume=10&rft.issue=5&rft.spage=5032&rft.epage=5045&rft.pages=5032-5045&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2018.2873411&rft_dat=%3Cproquest_RIE%3E2278401093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278401093&rft_id=info:pmid/&rft_ieee_id=8478111&rfr_iscdi=true |