Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures

In this work, nickel–chromium-layered double hydroxide (Ni(II)–Cr(III)LDH) is prepared via co-precipitation method at room temperature with 1:2:3 molar ratio of CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl using sodium hydroxide as a precipitating agent. Ni(II)–Cr(III) LDH is synthesized in the absence and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2019-09, Vol.125 (9), p.1-10, Article 642
Hauptverfasser: Zoromba, M. Sh, Bassyouni, M., Abdel-Aziz, M. H., Al-Hossainy, Ahmed F., Salah, Numan, Al-Ghamdi, A. A., Eid, Mohamed R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 9
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 125
creator Zoromba, M. Sh
Bassyouni, M.
Abdel-Aziz, M. H.
Al-Hossainy, Ahmed F.
Salah, Numan
Al-Ghamdi, A. A.
Eid, Mohamed R.
description In this work, nickel–chromium-layered double hydroxide (Ni(II)–Cr(III)LDH) is prepared via co-precipitation method at room temperature with 1:2:3 molar ratio of CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl using sodium hydroxide as a precipitating agent. Ni(II)–Cr(III) LDH is synthesized in the absence and in the presence of functionalized amino-organic compounds such as acetamide, glycine, and urea. The ratio between CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl: acetamide, glycine or urea was 1:2:3:6. The mixed nickel–chromium oxide nanoparticles are prepared by the calcination of Ni(II)–Cr(III) LDHs at 600 ℃ for 2.5 h. Ni(II)–Cr(III) LDHs and mixed Ni(II)–Cr(III) oxides nanoparticles are characterized by several techniques including FTIR, TGA, XRD, FESEM, HRTEM, and PL. Functionalized amino-organic compounds improve the thermal stability in the order of glycine > urea > acetamide. Also, it affects photoluminescence PL intensity which indicates a marked reduction in electron–hole recombination with the highest photocatalytic activity compared to visible light-driven H 2 and O 2 evolution. The resulting mixed Ni(II)–Cr(III) oxides particles have an amorphous structure and a relatively uniform size of below 10 nm. Graphic abstract
doi_str_mv 10.1007/s00339-019-2933-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2278091063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2278091063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d218e795c87db8cdc1572bd57f324ffd85190f1a4a76b6559a855f1ffe0c20b53</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhS0EEqXwAGyWmAO-xHE8ooqbVIkBmI3jC3Vp7GInUth4B96QJyFVQEz8y1nOd37pA-AUo3OMEL_ICFEqCoRFQQSlxbAHZrikpEAVRftghkTJi5qK6hAc5bxG45WEzMDzQ5d63fXJQhUM3K5iFzd964PN2gZtoV6ppHRnk8-d1xlGB1s_WAOD16928_XxqVcptr5vYRy8sRkGFWL-Xc3H4MCpTbYnPzkHT9dXj4vbYnl_c7e4XBaa4qorDMG15YLpmpum1kZjxkljGHeUlM6ZmmGBHFal4lVTMSZUzZjDzlmkCWoYnYOzaXeb4ltvcyfXsU9hfCkJ4TUSeDQxtvDU0inmnKyT2-Rbld4lRnInUk4i5ShS7kTKYWTIxOSxG15s-lv-H_oGQrp6KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278091063</pqid></control><display><type>article</type><title>Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures</title><source>SpringerNature Journals</source><creator>Zoromba, M. Sh ; Bassyouni, M. ; Abdel-Aziz, M. H. ; Al-Hossainy, Ahmed F. ; Salah, Numan ; Al-Ghamdi, A. A. ; Eid, Mohamed R.</creator><creatorcontrib>Zoromba, M. Sh ; Bassyouni, M. ; Abdel-Aziz, M. H. ; Al-Hossainy, Ahmed F. ; Salah, Numan ; Al-Ghamdi, A. A. ; Eid, Mohamed R.</creatorcontrib><description>In this work, nickel–chromium-layered double hydroxide (Ni(II)–Cr(III)LDH) is prepared via co-precipitation method at room temperature with 1:2:3 molar ratio of CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl using sodium hydroxide as a precipitating agent. Ni(II)–Cr(III) LDH is synthesized in the absence and in the presence of functionalized amino-organic compounds such as acetamide, glycine, and urea. The ratio between CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl: acetamide, glycine or urea was 1:2:3:6. The mixed nickel–chromium oxide nanoparticles are prepared by the calcination of Ni(II)–Cr(III) LDHs at 600 ℃ for 2.5 h. Ni(II)–Cr(III) LDHs and mixed Ni(II)–Cr(III) oxides nanoparticles are characterized by several techniques including FTIR, TGA, XRD, FESEM, HRTEM, and PL. Functionalized amino-organic compounds improve the thermal stability in the order of glycine &gt; urea &gt; acetamide. Also, it affects photoluminescence PL intensity which indicates a marked reduction in electron–hole recombination with the highest photocatalytic activity compared to visible light-driven H 2 and O 2 evolution. The resulting mixed Ni(II)–Cr(III) oxides particles have an amorphous structure and a relatively uniform size of below 10 nm. Graphic abstract</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-019-2933-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Catalytic activity ; Characterization and Evaluation of Materials ; Chromium oxides ; Condensed Matter Physics ; Coprecipitation ; Glycine ; Hydroxides ; Machines ; Manufacturing ; Materials science ; Nanoparticles ; Nanotechnology ; Nickel chloride ; Optical and Electronic Materials ; Organic compounds ; Photocatalysis ; Photoluminescence ; Physics ; Physics and Astronomy ; Processes ; Sodium hydroxide ; Surfaces and Interfaces ; Thermal stability ; Thin Films ; Trivalent chromium ; Ureas</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2019-09, Vol.125 (9), p.1-10, Article 642</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d218e795c87db8cdc1572bd57f324ffd85190f1a4a76b6559a855f1ffe0c20b53</citedby><cites>FETCH-LOGICAL-c316t-d218e795c87db8cdc1572bd57f324ffd85190f1a4a76b6559a855f1ffe0c20b53</cites><orcidid>0000-0001-5531-6940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-019-2933-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-019-2933-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zoromba, M. Sh</creatorcontrib><creatorcontrib>Bassyouni, M.</creatorcontrib><creatorcontrib>Abdel-Aziz, M. H.</creatorcontrib><creatorcontrib>Al-Hossainy, Ahmed F.</creatorcontrib><creatorcontrib>Salah, Numan</creatorcontrib><creatorcontrib>Al-Ghamdi, A. A.</creatorcontrib><creatorcontrib>Eid, Mohamed R.</creatorcontrib><title>Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this work, nickel–chromium-layered double hydroxide (Ni(II)–Cr(III)LDH) is prepared via co-precipitation method at room temperature with 1:2:3 molar ratio of CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl using sodium hydroxide as a precipitating agent. Ni(II)–Cr(III) LDH is synthesized in the absence and in the presence of functionalized amino-organic compounds such as acetamide, glycine, and urea. The ratio between CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl: acetamide, glycine or urea was 1:2:3:6. The mixed nickel–chromium oxide nanoparticles are prepared by the calcination of Ni(II)–Cr(III) LDHs at 600 ℃ for 2.5 h. Ni(II)–Cr(III) LDHs and mixed Ni(II)–Cr(III) oxides nanoparticles are characterized by several techniques including FTIR, TGA, XRD, FESEM, HRTEM, and PL. Functionalized amino-organic compounds improve the thermal stability in the order of glycine &gt; urea &gt; acetamide. Also, it affects photoluminescence PL intensity which indicates a marked reduction in electron–hole recombination with the highest photocatalytic activity compared to visible light-driven H 2 and O 2 evolution. The resulting mixed Ni(II)–Cr(III) oxides particles have an amorphous structure and a relatively uniform size of below 10 nm. Graphic abstract</description><subject>Applied physics</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chromium oxides</subject><subject>Condensed Matter Physics</subject><subject>Coprecipitation</subject><subject>Glycine</subject><subject>Hydroxides</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nickel chloride</subject><subject>Optical and Electronic Materials</subject><subject>Organic compounds</subject><subject>Photocatalysis</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Sodium hydroxide</subject><subject>Surfaces and Interfaces</subject><subject>Thermal stability</subject><subject>Thin Films</subject><subject>Trivalent chromium</subject><subject>Ureas</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhS0EEqXwAGyWmAO-xHE8ooqbVIkBmI3jC3Vp7GInUth4B96QJyFVQEz8y1nOd37pA-AUo3OMEL_ICFEqCoRFQQSlxbAHZrikpEAVRftghkTJi5qK6hAc5bxG45WEzMDzQ5d63fXJQhUM3K5iFzd964PN2gZtoV6ppHRnk8-d1xlGB1s_WAOD16928_XxqVcptr5vYRy8sRkGFWL-Xc3H4MCpTbYnPzkHT9dXj4vbYnl_c7e4XBaa4qorDMG15YLpmpum1kZjxkljGHeUlM6ZmmGBHFal4lVTMSZUzZjDzlmkCWoYnYOzaXeb4ltvcyfXsU9hfCkJ4TUSeDQxtvDU0inmnKyT2-Rbld4lRnInUk4i5ShS7kTKYWTIxOSxG15s-lv-H_oGQrp6KA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zoromba, M. Sh</creator><creator>Bassyouni, M.</creator><creator>Abdel-Aziz, M. H.</creator><creator>Al-Hossainy, Ahmed F.</creator><creator>Salah, Numan</creator><creator>Al-Ghamdi, A. A.</creator><creator>Eid, Mohamed R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5531-6940</orcidid></search><sort><creationdate>20190901</creationdate><title>Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures</title><author>Zoromba, M. Sh ; Bassyouni, M. ; Abdel-Aziz, M. H. ; Al-Hossainy, Ahmed F. ; Salah, Numan ; Al-Ghamdi, A. A. ; Eid, Mohamed R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d218e795c87db8cdc1572bd57f324ffd85190f1a4a76b6559a855f1ffe0c20b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chromium oxides</topic><topic>Condensed Matter Physics</topic><topic>Coprecipitation</topic><topic>Glycine</topic><topic>Hydroxides</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nickel chloride</topic><topic>Optical and Electronic Materials</topic><topic>Organic compounds</topic><topic>Photocatalysis</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Sodium hydroxide</topic><topic>Surfaces and Interfaces</topic><topic>Thermal stability</topic><topic>Thin Films</topic><topic>Trivalent chromium</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zoromba, M. Sh</creatorcontrib><creatorcontrib>Bassyouni, M.</creatorcontrib><creatorcontrib>Abdel-Aziz, M. H.</creatorcontrib><creatorcontrib>Al-Hossainy, Ahmed F.</creatorcontrib><creatorcontrib>Salah, Numan</creatorcontrib><creatorcontrib>Al-Ghamdi, A. A.</creatorcontrib><creatorcontrib>Eid, Mohamed R.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zoromba, M. Sh</au><au>Bassyouni, M.</au><au>Abdel-Aziz, M. H.</au><au>Al-Hossainy, Ahmed F.</au><au>Salah, Numan</au><au>Al-Ghamdi, A. A.</au><au>Eid, Mohamed R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>125</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>642</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this work, nickel–chromium-layered double hydroxide (Ni(II)–Cr(III)LDH) is prepared via co-precipitation method at room temperature with 1:2:3 molar ratio of CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl using sodium hydroxide as a precipitating agent. Ni(II)–Cr(III) LDH is synthesized in the absence and in the presence of functionalized amino-organic compounds such as acetamide, glycine, and urea. The ratio between CrCl 3 ·6H 2 O: NiCl 2 ·6H 2 O: NaCl: acetamide, glycine or urea was 1:2:3:6. The mixed nickel–chromium oxide nanoparticles are prepared by the calcination of Ni(II)–Cr(III) LDHs at 600 ℃ for 2.5 h. Ni(II)–Cr(III) LDHs and mixed Ni(II)–Cr(III) oxides nanoparticles are characterized by several techniques including FTIR, TGA, XRD, FESEM, HRTEM, and PL. Functionalized amino-organic compounds improve the thermal stability in the order of glycine &gt; urea &gt; acetamide. Also, it affects photoluminescence PL intensity which indicates a marked reduction in electron–hole recombination with the highest photocatalytic activity compared to visible light-driven H 2 and O 2 evolution. The resulting mixed Ni(II)–Cr(III) oxides particles have an amorphous structure and a relatively uniform size of below 10 nm. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-019-2933-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5531-6940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2019-09, Vol.125 (9), p.1-10, Article 642
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2278091063
source SpringerNature Journals
subjects Applied physics
Catalytic activity
Characterization and Evaluation of Materials
Chromium oxides
Condensed Matter Physics
Coprecipitation
Glycine
Hydroxides
Machines
Manufacturing
Materials science
Nanoparticles
Nanotechnology
Nickel chloride
Optical and Electronic Materials
Organic compounds
Photocatalysis
Photoluminescence
Physics
Physics and Astronomy
Processes
Sodium hydroxide
Surfaces and Interfaces
Thermal stability
Thin Films
Trivalent chromium
Ureas
title Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20photoluminescence%20characteristics%20of%20mixed%20nickel%E2%80%93chromium%20oxides%20nanostructures&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Zoromba,%20M.%20Sh&rft.date=2019-09-01&rft.volume=125&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=642&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-019-2933-x&rft_dat=%3Cproquest_cross%3E2278091063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278091063&rft_id=info:pmid/&rfr_iscdi=true