Nature Helps: Toward Bioinspired Bactericidal Nanopatterns

Development of synthetic bactericidal surfaces is a drug‐free route to the prevention of implant‐associated infections. Surface nanotopographies with specific dimensions have been shown to kill various types of bacterial strains through a mechanical mechanism, while regulating stem cell differentiat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2019-08, Vol.6 (16), p.n/a
Hauptverfasser: Ganjian, Mahya, Modaresifar, Khashayar, Ligeon, Manon R. O., Kunkels, Lorenzo B., Tümer, Nazli, Angeloni, Livia, Hagen, Cornelis W., Otten, Linda G., Hagedoorn, Peter‐Leon, Apachitei, Iulian, Fratila‐Apachitei, Lidy E., Zadpoor, Amir A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced materials interfaces
container_volume 6
creator Ganjian, Mahya
Modaresifar, Khashayar
Ligeon, Manon R. O.
Kunkels, Lorenzo B.
Tümer, Nazli
Angeloni, Livia
Hagen, Cornelis W.
Otten, Linda G.
Hagedoorn, Peter‐Leon
Apachitei, Iulian
Fratila‐Apachitei, Lidy E.
Zadpoor, Amir A.
description Development of synthetic bactericidal surfaces is a drug‐free route to the prevention of implant‐associated infections. Surface nanotopographies with specific dimensions have been shown to kill various types of bacterial strains through a mechanical mechanism, while regulating stem cell differentiation and tissue regeneration. The effective ranges of dimensions required to simultaneously achieve both aims are in the
doi_str_mv 10.1002/admi.201900640
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277870735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277870735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4200-794b8d888d9227acce760b9b337ff5bde6c8334587c068e6ce09481cfc39a9153</originalsourceid><addsrcrecordid>eNqFUM9LwzAUDqLgmLt6LnhufUnaJtltTucGc17mOaRpChldW5OWsf_ejIp68_S-9_h-8D6E7jEkGIA8qvJoEwJYAOQpXKEJwSKPGc3g-g--RTPvDwCAMcGE0wma71Q_OBOtTd35ebRvT8qV0ZNtbeM760zASvfGWW1LVUc71bSd6sOh8XfoplK1N7PvOUUfq5f9ch1v3183y8U21ikBiJlIC15yzktBCFNaG5ZDIQpKWVVlRWlyzSlNM8405DxsBkTKsa40FUrgjE7Rw-jbufZzML6Xh3ZwTYiUwZBxBuG1wEpGlnat985UsnP2qNxZYpCXiuSlIvlTURCIUXCytTn_w5aL57fNr_YL4TZpGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277870735</pqid></control><display><type>article</type><title>Nature Helps: Toward Bioinspired Bactericidal Nanopatterns</title><source>Wiley Journals</source><creator>Ganjian, Mahya ; Modaresifar, Khashayar ; Ligeon, Manon R. O. ; Kunkels, Lorenzo B. ; Tümer, Nazli ; Angeloni, Livia ; Hagen, Cornelis W. ; Otten, Linda G. ; Hagedoorn, Peter‐Leon ; Apachitei, Iulian ; Fratila‐Apachitei, Lidy E. ; Zadpoor, Amir A.</creator><creatorcontrib>Ganjian, Mahya ; Modaresifar, Khashayar ; Ligeon, Manon R. O. ; Kunkels, Lorenzo B. ; Tümer, Nazli ; Angeloni, Livia ; Hagen, Cornelis W. ; Otten, Linda G. ; Hagedoorn, Peter‐Leon ; Apachitei, Iulian ; Fratila‐Apachitei, Lidy E. ; Zadpoor, Amir A.</creatorcontrib><description>Development of synthetic bactericidal surfaces is a drug‐free route to the prevention of implant‐associated infections. Surface nanotopographies with specific dimensions have been shown to kill various types of bacterial strains through a mechanical mechanism, while regulating stem cell differentiation and tissue regeneration. The effective ranges of dimensions required to simultaneously achieve both aims are in the &lt;200 nm range. Here, a nanoscale additive manufacturing (=3D printing) technique called electron beam induced deposition (EBID) is used to fabricate nanopillars with reproducible and precisely controlled dimensions and arrangements that are within those effective ranges (i.e. a height of 190 nm, a diameter of 80 nm, and an interspacing of 170 nm). When compared to the flat surface, the nanopatterned surfaces show a significant bactericidal activity against both Escherichia coli and Staphylococcus aureus (with respective killing efficiencies of 97 ± 1% and 36 ± 5%). Direct penetration of nanopatterns into the bacterial cell wall leads to the disruption of the cell wall and cell death. The more rigid cell wall of S. aureus is consistent with the decreased killing efficiency. These findings support the development of nanopatterns with precisely controlled dimensions that are capable of killing both Gram‐negative and Gram‐positive bacteria. It is known that nanopillars with specific dimensions possess the potential to mechanically kill the bacteria. Such nanopillars are produced by electron beam‐induced deposition technique. A noticeable percentage of Escherichia coli bacteria are killed on the nanopillars. However, the killing efficiency is lower against Staphylococcus aureus, due to its rigid cell wall, which necessitates designing nanopillars that can apply higher forces on it.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201900640</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>antibacterial effects ; Bacteria ; biomimetics ; Cell death ; Differentiation (biology) ; Disruption ; E coli ; Electron beams ; Flat surfaces ; nanoscale additive manufacturing ; Regeneration ; Stem cells ; surface nanopatterns ; Three dimensional printing ; Tissue engineering</subject><ispartof>Advanced materials interfaces, 2019-08, Vol.6 (16), p.n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4200-794b8d888d9227acce760b9b337ff5bde6c8334587c068e6ce09481cfc39a9153</citedby><cites>FETCH-LOGICAL-c4200-794b8d888d9227acce760b9b337ff5bde6c8334587c068e6ce09481cfc39a9153</cites><orcidid>0000-0002-0391-8541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201900640$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201900640$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ganjian, Mahya</creatorcontrib><creatorcontrib>Modaresifar, Khashayar</creatorcontrib><creatorcontrib>Ligeon, Manon R. O.</creatorcontrib><creatorcontrib>Kunkels, Lorenzo B.</creatorcontrib><creatorcontrib>Tümer, Nazli</creatorcontrib><creatorcontrib>Angeloni, Livia</creatorcontrib><creatorcontrib>Hagen, Cornelis W.</creatorcontrib><creatorcontrib>Otten, Linda G.</creatorcontrib><creatorcontrib>Hagedoorn, Peter‐Leon</creatorcontrib><creatorcontrib>Apachitei, Iulian</creatorcontrib><creatorcontrib>Fratila‐Apachitei, Lidy E.</creatorcontrib><creatorcontrib>Zadpoor, Amir A.</creatorcontrib><title>Nature Helps: Toward Bioinspired Bactericidal Nanopatterns</title><title>Advanced materials interfaces</title><description>Development of synthetic bactericidal surfaces is a drug‐free route to the prevention of implant‐associated infections. Surface nanotopographies with specific dimensions have been shown to kill various types of bacterial strains through a mechanical mechanism, while regulating stem cell differentiation and tissue regeneration. The effective ranges of dimensions required to simultaneously achieve both aims are in the &lt;200 nm range. Here, a nanoscale additive manufacturing (=3D printing) technique called electron beam induced deposition (EBID) is used to fabricate nanopillars with reproducible and precisely controlled dimensions and arrangements that are within those effective ranges (i.e. a height of 190 nm, a diameter of 80 nm, and an interspacing of 170 nm). When compared to the flat surface, the nanopatterned surfaces show a significant bactericidal activity against both Escherichia coli and Staphylococcus aureus (with respective killing efficiencies of 97 ± 1% and 36 ± 5%). Direct penetration of nanopatterns into the bacterial cell wall leads to the disruption of the cell wall and cell death. The more rigid cell wall of S. aureus is consistent with the decreased killing efficiency. These findings support the development of nanopatterns with precisely controlled dimensions that are capable of killing both Gram‐negative and Gram‐positive bacteria. It is known that nanopillars with specific dimensions possess the potential to mechanically kill the bacteria. Such nanopillars are produced by electron beam‐induced deposition technique. A noticeable percentage of Escherichia coli bacteria are killed on the nanopillars. However, the killing efficiency is lower against Staphylococcus aureus, due to its rigid cell wall, which necessitates designing nanopillars that can apply higher forces on it.</description><subject>antibacterial effects</subject><subject>Bacteria</subject><subject>biomimetics</subject><subject>Cell death</subject><subject>Differentiation (biology)</subject><subject>Disruption</subject><subject>E coli</subject><subject>Electron beams</subject><subject>Flat surfaces</subject><subject>nanoscale additive manufacturing</subject><subject>Regeneration</subject><subject>Stem cells</subject><subject>surface nanopatterns</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUM9LwzAUDqLgmLt6LnhufUnaJtltTucGc17mOaRpChldW5OWsf_ejIp68_S-9_h-8D6E7jEkGIA8qvJoEwJYAOQpXKEJwSKPGc3g-g--RTPvDwCAMcGE0wma71Q_OBOtTd35ebRvT8qV0ZNtbeM760zASvfGWW1LVUc71bSd6sOh8XfoplK1N7PvOUUfq5f9ch1v3183y8U21ikBiJlIC15yzktBCFNaG5ZDIQpKWVVlRWlyzSlNM8405DxsBkTKsa40FUrgjE7Rw-jbufZzML6Xh3ZwTYiUwZBxBuG1wEpGlnat985UsnP2qNxZYpCXiuSlIvlTURCIUXCytTn_w5aL57fNr_YL4TZpGw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Ganjian, Mahya</creator><creator>Modaresifar, Khashayar</creator><creator>Ligeon, Manon R. O.</creator><creator>Kunkels, Lorenzo B.</creator><creator>Tümer, Nazli</creator><creator>Angeloni, Livia</creator><creator>Hagen, Cornelis W.</creator><creator>Otten, Linda G.</creator><creator>Hagedoorn, Peter‐Leon</creator><creator>Apachitei, Iulian</creator><creator>Fratila‐Apachitei, Lidy E.</creator><creator>Zadpoor, Amir A.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0391-8541</orcidid></search><sort><creationdate>20190801</creationdate><title>Nature Helps: Toward Bioinspired Bactericidal Nanopatterns</title><author>Ganjian, Mahya ; Modaresifar, Khashayar ; Ligeon, Manon R. O. ; Kunkels, Lorenzo B. ; Tümer, Nazli ; Angeloni, Livia ; Hagen, Cornelis W. ; Otten, Linda G. ; Hagedoorn, Peter‐Leon ; Apachitei, Iulian ; Fratila‐Apachitei, Lidy E. ; Zadpoor, Amir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4200-794b8d888d9227acce760b9b337ff5bde6c8334587c068e6ce09481cfc39a9153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>antibacterial effects</topic><topic>Bacteria</topic><topic>biomimetics</topic><topic>Cell death</topic><topic>Differentiation (biology)</topic><topic>Disruption</topic><topic>E coli</topic><topic>Electron beams</topic><topic>Flat surfaces</topic><topic>nanoscale additive manufacturing</topic><topic>Regeneration</topic><topic>Stem cells</topic><topic>surface nanopatterns</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganjian, Mahya</creatorcontrib><creatorcontrib>Modaresifar, Khashayar</creatorcontrib><creatorcontrib>Ligeon, Manon R. O.</creatorcontrib><creatorcontrib>Kunkels, Lorenzo B.</creatorcontrib><creatorcontrib>Tümer, Nazli</creatorcontrib><creatorcontrib>Angeloni, Livia</creatorcontrib><creatorcontrib>Hagen, Cornelis W.</creatorcontrib><creatorcontrib>Otten, Linda G.</creatorcontrib><creatorcontrib>Hagedoorn, Peter‐Leon</creatorcontrib><creatorcontrib>Apachitei, Iulian</creatorcontrib><creatorcontrib>Fratila‐Apachitei, Lidy E.</creatorcontrib><creatorcontrib>Zadpoor, Amir A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganjian, Mahya</au><au>Modaresifar, Khashayar</au><au>Ligeon, Manon R. O.</au><au>Kunkels, Lorenzo B.</au><au>Tümer, Nazli</au><au>Angeloni, Livia</au><au>Hagen, Cornelis W.</au><au>Otten, Linda G.</au><au>Hagedoorn, Peter‐Leon</au><au>Apachitei, Iulian</au><au>Fratila‐Apachitei, Lidy E.</au><au>Zadpoor, Amir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nature Helps: Toward Bioinspired Bactericidal Nanopatterns</atitle><jtitle>Advanced materials interfaces</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>6</volume><issue>16</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Development of synthetic bactericidal surfaces is a drug‐free route to the prevention of implant‐associated infections. Surface nanotopographies with specific dimensions have been shown to kill various types of bacterial strains through a mechanical mechanism, while regulating stem cell differentiation and tissue regeneration. The effective ranges of dimensions required to simultaneously achieve both aims are in the &lt;200 nm range. Here, a nanoscale additive manufacturing (=3D printing) technique called electron beam induced deposition (EBID) is used to fabricate nanopillars with reproducible and precisely controlled dimensions and arrangements that are within those effective ranges (i.e. a height of 190 nm, a diameter of 80 nm, and an interspacing of 170 nm). When compared to the flat surface, the nanopatterned surfaces show a significant bactericidal activity against both Escherichia coli and Staphylococcus aureus (with respective killing efficiencies of 97 ± 1% and 36 ± 5%). Direct penetration of nanopatterns into the bacterial cell wall leads to the disruption of the cell wall and cell death. The more rigid cell wall of S. aureus is consistent with the decreased killing efficiency. These findings support the development of nanopatterns with precisely controlled dimensions that are capable of killing both Gram‐negative and Gram‐positive bacteria. It is known that nanopillars with specific dimensions possess the potential to mechanically kill the bacteria. Such nanopillars are produced by electron beam‐induced deposition technique. A noticeable percentage of Escherichia coli bacteria are killed on the nanopillars. However, the killing efficiency is lower against Staphylococcus aureus, due to its rigid cell wall, which necessitates designing nanopillars that can apply higher forces on it.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.201900640</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0391-8541</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2019-08, Vol.6 (16), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2277870735
source Wiley Journals
subjects antibacterial effects
Bacteria
biomimetics
Cell death
Differentiation (biology)
Disruption
E coli
Electron beams
Flat surfaces
nanoscale additive manufacturing
Regeneration
Stem cells
surface nanopatterns
Three dimensional printing
Tissue engineering
title Nature Helps: Toward Bioinspired Bactericidal Nanopatterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nature%20Helps:%20Toward%20Bioinspired%20Bactericidal%20Nanopatterns&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Ganjian,%20Mahya&rft.date=2019-08-01&rft.volume=6&rft.issue=16&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201900640&rft_dat=%3Cproquest_cross%3E2277870735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277870735&rft_id=info:pmid/&rfr_iscdi=true