Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite

The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralium deposita 2020-08, Vol.55 (6), p.1105-1126
Hauptverfasser: Friedrich, Betina Maria, Marques, Juliana Charão, Olivo, Gema Ribeiro, Frantz, José Carlos, Joy, Brian, Queiroz, Waldemir José Alves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1126
container_issue 6
container_start_page 1105
container_title Mineralium deposita
container_volume 55
creator Friedrich, Betina Maria
Marques, Juliana Charão
Olivo, Gema Ribeiro
Frantz, José Carlos
Joy, Brian
Queiroz, Waldemir José Alves
description The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stratigraphy, mineralogical and textural relationships, and mineral chemistry of the Monte Alegre Sul segment focusing on chromite-hosted inclusions from the Main Chromitite Layer to understand the role of volatiles in the genesis of the massive chromitite. Silicate inclusions (enstatite, phlogopite, magnesiohornblende, diopside and olivine) are commonly monomineralic and sub- to euhedral, and crystallized prior to, or coeval with, the chromite crystallization. Carbonate inclusions (dolomite and magnesite) are irregular or have negative crystal shapes, suggesting entrapment as melt droplets. Sulfides (pentlandite, millerite, heazlewoodite, polydymite, pyrite, and chalcopyrite) are often polymineralic, irregular, or hexagonal-shaped, indicating entrapment as sulfide melt and as monosulfide solid solution. The inclusions indicate an H 2 O- and S-saturated resident magma with immiscible droplets of carbonate melt during chromite crystallization. Inclusion-rich and inclusion-free chromites that occur together have similar compositions and are considered to have formed from the same magma in response to variations in the degree of Cr saturation. Hot primitive magma might have heated and mobilized CO 2 and probably water from devolatized and assimilated carbonate-rich wall rocks, increasing f O 2 and triggering chromite crystallization. We propose that the formation of the chromitite layer started as in situ crystallization with additional material added by slumping of locally remobilized chromite slurries, facilitated by the presence of volatiles.
doi_str_mv 10.1007/s00126-019-00917-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277754059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277754059</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-c08868c40bf7ad8bbfe33985dacac17a0baac106f8416d6b037ea6b7358418b63</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEqXwBzhZ4kpgnMV2uEHFKiQ4wNlynEnrKkuxk4ry63EbEDdOs33vjfQIOWVwwQDEpQdgMY-A5RFAzkQEe2TC0iSOmOR8n0wAwjnNcnlIjrxfwpZKYUL6V-xdN8cWvfW0q2i_QNpo7-0aqVm4rrG97ZHWeoOOVmHeEU_aDM4aS2dds6rx85zeOP1l6yuKa1tia3BkbWvqwduu9aH99cNjclDp2uPJT52S97vbt9lD9Pxy_zi7fo50ksZ9ZEBKLk0KRSV0KYuiwiTJZVZqow0TGgodKvBKpoyXvIBEoOaFSLKwkAVPpuRs9F257mNA36tlN7g2vFRxLITIUsjyQMUjZVznvcNKrZxttNsoBmqbrhrTVSFdtUtXQRAlo8gHuJ2j-7P-R_UNldB-5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277754059</pqid></control><display><type>article</type><title>Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite</title><source>SpringerLink Journals - AutoHoldings</source><creator>Friedrich, Betina Maria ; Marques, Juliana Charão ; Olivo, Gema Ribeiro ; Frantz, José Carlos ; Joy, Brian ; Queiroz, Waldemir José Alves</creator><creatorcontrib>Friedrich, Betina Maria ; Marques, Juliana Charão ; Olivo, Gema Ribeiro ; Frantz, José Carlos ; Joy, Brian ; Queiroz, Waldemir José Alves</creatorcontrib><description>The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stratigraphy, mineralogical and textural relationships, and mineral chemistry of the Monte Alegre Sul segment focusing on chromite-hosted inclusions from the Main Chromitite Layer to understand the role of volatiles in the genesis of the massive chromitite. Silicate inclusions (enstatite, phlogopite, magnesiohornblende, diopside and olivine) are commonly monomineralic and sub- to euhedral, and crystallized prior to, or coeval with, the chromite crystallization. Carbonate inclusions (dolomite and magnesite) are irregular or have negative crystal shapes, suggesting entrapment as melt droplets. Sulfides (pentlandite, millerite, heazlewoodite, polydymite, pyrite, and chalcopyrite) are often polymineralic, irregular, or hexagonal-shaped, indicating entrapment as sulfide melt and as monosulfide solid solution. The inclusions indicate an H 2 O- and S-saturated resident magma with immiscible droplets of carbonate melt during chromite crystallization. Inclusion-rich and inclusion-free chromites that occur together have similar compositions and are considered to have formed from the same magma in response to variations in the degree of Cr saturation. Hot primitive magma might have heated and mobilized CO 2 and probably water from devolatized and assimilated carbonate-rich wall rocks, increasing f O 2 and triggering chromite crystallization. We propose that the formation of the chromitite layer started as in situ crystallization with additional material added by slumping of locally remobilized chromite slurries, facilitated by the presence of volatiles.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-019-00917-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calcium magnesium silicates ; Carbon dioxide ; Carbonates ; Chalcopyrite ; Chromite ; Contamination ; Crystallization ; Diopside ; Dolomite ; Dolostone ; Droplets ; Earth and Environmental Science ; Earth Sciences ; Entrapment ; Geology ; Inclusions ; Intrusion ; Lava ; Magma ; Magnesite ; Magnesium carbonate ; Mineral Resources ; Mineralogy ; Nickel ores ; Olivine ; Organic chemistry ; Pentlandite ; Petrogenesis ; Pyrite ; Saturation ; Silicates ; Slumping ; Slurries ; Solid solutions ; Stratigraphy ; Sulfides ; Sulphides ; Volatiles</subject><ispartof>Mineralium deposita, 2020-08, Vol.55 (6), p.1105-1126</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-c08868c40bf7ad8bbfe33985dacac17a0baac106f8416d6b037ea6b7358418b63</citedby><cites>FETCH-LOGICAL-a342t-c08868c40bf7ad8bbfe33985dacac17a0baac106f8416d6b037ea6b7358418b63</cites><orcidid>0000-0002-8000-6212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-019-00917-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-019-00917-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Friedrich, Betina Maria</creatorcontrib><creatorcontrib>Marques, Juliana Charão</creatorcontrib><creatorcontrib>Olivo, Gema Ribeiro</creatorcontrib><creatorcontrib>Frantz, José Carlos</creatorcontrib><creatorcontrib>Joy, Brian</creatorcontrib><creatorcontrib>Queiroz, Waldemir José Alves</creatorcontrib><title>Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stratigraphy, mineralogical and textural relationships, and mineral chemistry of the Monte Alegre Sul segment focusing on chromite-hosted inclusions from the Main Chromitite Layer to understand the role of volatiles in the genesis of the massive chromitite. Silicate inclusions (enstatite, phlogopite, magnesiohornblende, diopside and olivine) are commonly monomineralic and sub- to euhedral, and crystallized prior to, or coeval with, the chromite crystallization. Carbonate inclusions (dolomite and magnesite) are irregular or have negative crystal shapes, suggesting entrapment as melt droplets. Sulfides (pentlandite, millerite, heazlewoodite, polydymite, pyrite, and chalcopyrite) are often polymineralic, irregular, or hexagonal-shaped, indicating entrapment as sulfide melt and as monosulfide solid solution. The inclusions indicate an H 2 O- and S-saturated resident magma with immiscible droplets of carbonate melt during chromite crystallization. Inclusion-rich and inclusion-free chromites that occur together have similar compositions and are considered to have formed from the same magma in response to variations in the degree of Cr saturation. Hot primitive magma might have heated and mobilized CO 2 and probably water from devolatized and assimilated carbonate-rich wall rocks, increasing f O 2 and triggering chromite crystallization. We propose that the formation of the chromitite layer started as in situ crystallization with additional material added by slumping of locally remobilized chromite slurries, facilitated by the presence of volatiles.</description><subject>Calcium magnesium silicates</subject><subject>Carbon dioxide</subject><subject>Carbonates</subject><subject>Chalcopyrite</subject><subject>Chromite</subject><subject>Contamination</subject><subject>Crystallization</subject><subject>Diopside</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Droplets</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Entrapment</subject><subject>Geology</subject><subject>Inclusions</subject><subject>Intrusion</subject><subject>Lava</subject><subject>Magma</subject><subject>Magnesite</subject><subject>Magnesium carbonate</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Nickel ores</subject><subject>Olivine</subject><subject>Organic chemistry</subject><subject>Pentlandite</subject><subject>Petrogenesis</subject><subject>Pyrite</subject><subject>Saturation</subject><subject>Silicates</subject><subject>Slumping</subject><subject>Slurries</subject><subject>Solid solutions</subject><subject>Stratigraphy</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Volatiles</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kElPwzAQhS0EEqXwBzhZ4kpgnMV2uEHFKiQ4wNlynEnrKkuxk4ry63EbEDdOs33vjfQIOWVwwQDEpQdgMY-A5RFAzkQEe2TC0iSOmOR8n0wAwjnNcnlIjrxfwpZKYUL6V-xdN8cWvfW0q2i_QNpo7-0aqVm4rrG97ZHWeoOOVmHeEU_aDM4aS2dds6rx85zeOP1l6yuKa1tia3BkbWvqwduu9aH99cNjclDp2uPJT52S97vbt9lD9Pxy_zi7fo50ksZ9ZEBKLk0KRSV0KYuiwiTJZVZqow0TGgodKvBKpoyXvIBEoOaFSLKwkAVPpuRs9F257mNA36tlN7g2vFRxLITIUsjyQMUjZVznvcNKrZxttNsoBmqbrhrTVSFdtUtXQRAlo8gHuJ2j-7P-R_UNldB-5w</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Friedrich, Betina Maria</creator><creator>Marques, Juliana Charão</creator><creator>Olivo, Gema Ribeiro</creator><creator>Frantz, José Carlos</creator><creator>Joy, Brian</creator><creator>Queiroz, Waldemir José Alves</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8000-6212</orcidid></search><sort><creationdate>20200801</creationdate><title>Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite</title><author>Friedrich, Betina Maria ; Marques, Juliana Charão ; Olivo, Gema Ribeiro ; Frantz, José Carlos ; Joy, Brian ; Queiroz, Waldemir José Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-c08868c40bf7ad8bbfe33985dacac17a0baac106f8416d6b037ea6b7358418b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium magnesium silicates</topic><topic>Carbon dioxide</topic><topic>Carbonates</topic><topic>Chalcopyrite</topic><topic>Chromite</topic><topic>Contamination</topic><topic>Crystallization</topic><topic>Diopside</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Droplets</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Entrapment</topic><topic>Geology</topic><topic>Inclusions</topic><topic>Intrusion</topic><topic>Lava</topic><topic>Magma</topic><topic>Magnesite</topic><topic>Magnesium carbonate</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Nickel ores</topic><topic>Olivine</topic><topic>Organic chemistry</topic><topic>Pentlandite</topic><topic>Petrogenesis</topic><topic>Pyrite</topic><topic>Saturation</topic><topic>Silicates</topic><topic>Slumping</topic><topic>Slurries</topic><topic>Solid solutions</topic><topic>Stratigraphy</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Volatiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedrich, Betina Maria</creatorcontrib><creatorcontrib>Marques, Juliana Charão</creatorcontrib><creatorcontrib>Olivo, Gema Ribeiro</creatorcontrib><creatorcontrib>Frantz, José Carlos</creatorcontrib><creatorcontrib>Joy, Brian</creatorcontrib><creatorcontrib>Queiroz, Waldemir José Alves</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedrich, Betina Maria</au><au>Marques, Juliana Charão</au><au>Olivo, Gema Ribeiro</au><au>Frantz, José Carlos</au><au>Joy, Brian</au><au>Queiroz, Waldemir José Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>55</volume><issue>6</issue><spage>1105</spage><epage>1126</epage><pages>1105-1126</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stratigraphy, mineralogical and textural relationships, and mineral chemistry of the Monte Alegre Sul segment focusing on chromite-hosted inclusions from the Main Chromitite Layer to understand the role of volatiles in the genesis of the massive chromitite. Silicate inclusions (enstatite, phlogopite, magnesiohornblende, diopside and olivine) are commonly monomineralic and sub- to euhedral, and crystallized prior to, or coeval with, the chromite crystallization. Carbonate inclusions (dolomite and magnesite) are irregular or have negative crystal shapes, suggesting entrapment as melt droplets. Sulfides (pentlandite, millerite, heazlewoodite, polydymite, pyrite, and chalcopyrite) are often polymineralic, irregular, or hexagonal-shaped, indicating entrapment as sulfide melt and as monosulfide solid solution. The inclusions indicate an H 2 O- and S-saturated resident magma with immiscible droplets of carbonate melt during chromite crystallization. Inclusion-rich and inclusion-free chromites that occur together have similar compositions and are considered to have formed from the same magma in response to variations in the degree of Cr saturation. Hot primitive magma might have heated and mobilized CO 2 and probably water from devolatized and assimilated carbonate-rich wall rocks, increasing f O 2 and triggering chromite crystallization. We propose that the formation of the chromitite layer started as in situ crystallization with additional material added by slumping of locally remobilized chromite slurries, facilitated by the presence of volatiles.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-019-00917-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8000-6212</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2020-08, Vol.55 (6), p.1105-1126
issn 0026-4598
1432-1866
language eng
recordid cdi_proquest_journals_2277754059
source SpringerLink Journals - AutoHoldings
subjects Calcium magnesium silicates
Carbon dioxide
Carbonates
Chalcopyrite
Chromite
Contamination
Crystallization
Diopside
Dolomite
Dolostone
Droplets
Earth and Environmental Science
Earth Sciences
Entrapment
Geology
Inclusions
Intrusion
Lava
Magma
Magnesite
Magnesium carbonate
Mineral Resources
Mineralogy
Nickel ores
Olivine
Organic chemistry
Pentlandite
Petrogenesis
Pyrite
Saturation
Silicates
Slumping
Slurries
Solid solutions
Stratigraphy
Sulfides
Sulphides
Volatiles
title Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Petrogenesis%20of%20the%20massive%20chromitite%20layer%20from%20the%20Jacurici%20Complex,%20Brazil:%20evidence%20from%20inclusions%20in%20chromite&rft.jtitle=Mineralium%20deposita&rft.au=Friedrich,%20Betina%20Maria&rft.date=2020-08-01&rft.volume=55&rft.issue=6&rft.spage=1105&rft.epage=1126&rft.pages=1105-1126&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-019-00917-0&rft_dat=%3Cproquest_cross%3E2277754059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277754059&rft_id=info:pmid/&rfr_iscdi=true