Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite
The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stra...
Gespeichert in:
Veröffentlicht in: | Mineralium deposita 2020-08, Vol.55 (6), p.1105-1126 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1126 |
---|---|
container_issue | 6 |
container_start_page | 1105 |
container_title | Mineralium deposita |
container_volume | 55 |
creator | Friedrich, Betina Maria Marques, Juliana Charão Olivo, Gema Ribeiro Frantz, José Carlos Joy, Brian Queiroz, Waldemir José Alves |
description | The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stratigraphy, mineralogical and textural relationships, and mineral chemistry of the Monte Alegre Sul segment focusing on chromite-hosted inclusions from the Main Chromitite Layer to understand the role of volatiles in the genesis of the massive chromitite. Silicate inclusions (enstatite, phlogopite, magnesiohornblende, diopside and olivine) are commonly monomineralic and sub- to euhedral, and crystallized prior to, or coeval with, the chromite crystallization. Carbonate inclusions (dolomite and magnesite) are irregular or have negative crystal shapes, suggesting entrapment as melt droplets. Sulfides (pentlandite, millerite, heazlewoodite, polydymite, pyrite, and chalcopyrite) are often polymineralic, irregular, or hexagonal-shaped, indicating entrapment as sulfide melt and as monosulfide solid solution. The inclusions indicate an H
2
O- and S-saturated resident magma with immiscible droplets of carbonate melt during chromite crystallization. Inclusion-rich and inclusion-free chromites that occur together have similar compositions and are considered to have formed from the same magma in response to variations in the degree of Cr saturation. Hot primitive magma might have heated and mobilized CO
2
and probably water from devolatized and assimilated carbonate-rich wall rocks, increasing
f
O
2
and triggering chromite crystallization. We propose that the formation of the chromitite layer started as in situ crystallization with additional material added by slumping of locally remobilized chromite slurries, facilitated by the presence of volatiles. |
doi_str_mv | 10.1007/s00126-019-00917-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277754059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277754059</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-c08868c40bf7ad8bbfe33985dacac17a0baac106f8416d6b037ea6b7358418b63</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEqXwBzhZ4kpgnMV2uEHFKiQ4wNlynEnrKkuxk4ry63EbEDdOs33vjfQIOWVwwQDEpQdgMY-A5RFAzkQEe2TC0iSOmOR8n0wAwjnNcnlIjrxfwpZKYUL6V-xdN8cWvfW0q2i_QNpo7-0aqVm4rrG97ZHWeoOOVmHeEU_aDM4aS2dds6rx85zeOP1l6yuKa1tia3BkbWvqwduu9aH99cNjclDp2uPJT52S97vbt9lD9Pxy_zi7fo50ksZ9ZEBKLk0KRSV0KYuiwiTJZVZqow0TGgodKvBKpoyXvIBEoOaFSLKwkAVPpuRs9F257mNA36tlN7g2vFRxLITIUsjyQMUjZVznvcNKrZxttNsoBmqbrhrTVSFdtUtXQRAlo8gHuJ2j-7P-R_UNldB-5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277754059</pqid></control><display><type>article</type><title>Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite</title><source>SpringerLink Journals - AutoHoldings</source><creator>Friedrich, Betina Maria ; Marques, Juliana Charão ; Olivo, Gema Ribeiro ; Frantz, José Carlos ; Joy, Brian ; Queiroz, Waldemir José Alves</creator><creatorcontrib>Friedrich, Betina Maria ; Marques, Juliana Charão ; Olivo, Gema Ribeiro ; Frantz, José Carlos ; Joy, Brian ; Queiroz, Waldemir José Alves</creatorcontrib><description>The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stratigraphy, mineralogical and textural relationships, and mineral chemistry of the Monte Alegre Sul segment focusing on chromite-hosted inclusions from the Main Chromitite Layer to understand the role of volatiles in the genesis of the massive chromitite. Silicate inclusions (enstatite, phlogopite, magnesiohornblende, diopside and olivine) are commonly monomineralic and sub- to euhedral, and crystallized prior to, or coeval with, the chromite crystallization. Carbonate inclusions (dolomite and magnesite) are irregular or have negative crystal shapes, suggesting entrapment as melt droplets. Sulfides (pentlandite, millerite, heazlewoodite, polydymite, pyrite, and chalcopyrite) are often polymineralic, irregular, or hexagonal-shaped, indicating entrapment as sulfide melt and as monosulfide solid solution. The inclusions indicate an H
2
O- and S-saturated resident magma with immiscible droplets of carbonate melt during chromite crystallization. Inclusion-rich and inclusion-free chromites that occur together have similar compositions and are considered to have formed from the same magma in response to variations in the degree of Cr saturation. Hot primitive magma might have heated and mobilized CO
2
and probably water from devolatized and assimilated carbonate-rich wall rocks, increasing
f
O
2
and triggering chromite crystallization. We propose that the formation of the chromitite layer started as in situ crystallization with additional material added by slumping of locally remobilized chromite slurries, facilitated by the presence of volatiles.</description><identifier>ISSN: 0026-4598</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-019-00917-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calcium magnesium silicates ; Carbon dioxide ; Carbonates ; Chalcopyrite ; Chromite ; Contamination ; Crystallization ; Diopside ; Dolomite ; Dolostone ; Droplets ; Earth and Environmental Science ; Earth Sciences ; Entrapment ; Geology ; Inclusions ; Intrusion ; Lava ; Magma ; Magnesite ; Magnesium carbonate ; Mineral Resources ; Mineralogy ; Nickel ores ; Olivine ; Organic chemistry ; Pentlandite ; Petrogenesis ; Pyrite ; Saturation ; Silicates ; Slumping ; Slurries ; Solid solutions ; Stratigraphy ; Sulfides ; Sulphides ; Volatiles</subject><ispartof>Mineralium deposita, 2020-08, Vol.55 (6), p.1105-1126</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-c08868c40bf7ad8bbfe33985dacac17a0baac106f8416d6b037ea6b7358418b63</citedby><cites>FETCH-LOGICAL-a342t-c08868c40bf7ad8bbfe33985dacac17a0baac106f8416d6b037ea6b7358418b63</cites><orcidid>0000-0002-8000-6212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00126-019-00917-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00126-019-00917-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Friedrich, Betina Maria</creatorcontrib><creatorcontrib>Marques, Juliana Charão</creatorcontrib><creatorcontrib>Olivo, Gema Ribeiro</creatorcontrib><creatorcontrib>Frantz, José Carlos</creatorcontrib><creatorcontrib>Joy, Brian</creatorcontrib><creatorcontrib>Queiroz, Waldemir José Alves</creatorcontrib><title>Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stratigraphy, mineralogical and textural relationships, and mineral chemistry of the Monte Alegre Sul segment focusing on chromite-hosted inclusions from the Main Chromitite Layer to understand the role of volatiles in the genesis of the massive chromitite. Silicate inclusions (enstatite, phlogopite, magnesiohornblende, diopside and olivine) are commonly monomineralic and sub- to euhedral, and crystallized prior to, or coeval with, the chromite crystallization. Carbonate inclusions (dolomite and magnesite) are irregular or have negative crystal shapes, suggesting entrapment as melt droplets. Sulfides (pentlandite, millerite, heazlewoodite, polydymite, pyrite, and chalcopyrite) are often polymineralic, irregular, or hexagonal-shaped, indicating entrapment as sulfide melt and as monosulfide solid solution. The inclusions indicate an H
2
O- and S-saturated resident magma with immiscible droplets of carbonate melt during chromite crystallization. Inclusion-rich and inclusion-free chromites that occur together have similar compositions and are considered to have formed from the same magma in response to variations in the degree of Cr saturation. Hot primitive magma might have heated and mobilized CO
2
and probably water from devolatized and assimilated carbonate-rich wall rocks, increasing
f
O
2
and triggering chromite crystallization. We propose that the formation of the chromitite layer started as in situ crystallization with additional material added by slumping of locally remobilized chromite slurries, facilitated by the presence of volatiles.</description><subject>Calcium magnesium silicates</subject><subject>Carbon dioxide</subject><subject>Carbonates</subject><subject>Chalcopyrite</subject><subject>Chromite</subject><subject>Contamination</subject><subject>Crystallization</subject><subject>Diopside</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Droplets</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Entrapment</subject><subject>Geology</subject><subject>Inclusions</subject><subject>Intrusion</subject><subject>Lava</subject><subject>Magma</subject><subject>Magnesite</subject><subject>Magnesium carbonate</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Nickel ores</subject><subject>Olivine</subject><subject>Organic chemistry</subject><subject>Pentlandite</subject><subject>Petrogenesis</subject><subject>Pyrite</subject><subject>Saturation</subject><subject>Silicates</subject><subject>Slumping</subject><subject>Slurries</subject><subject>Solid solutions</subject><subject>Stratigraphy</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Volatiles</subject><issn>0026-4598</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kElPwzAQhS0EEqXwBzhZ4kpgnMV2uEHFKiQ4wNlynEnrKkuxk4ry63EbEDdOs33vjfQIOWVwwQDEpQdgMY-A5RFAzkQEe2TC0iSOmOR8n0wAwjnNcnlIjrxfwpZKYUL6V-xdN8cWvfW0q2i_QNpo7-0aqVm4rrG97ZHWeoOOVmHeEU_aDM4aS2dds6rx85zeOP1l6yuKa1tia3BkbWvqwduu9aH99cNjclDp2uPJT52S97vbt9lD9Pxy_zi7fo50ksZ9ZEBKLk0KRSV0KYuiwiTJZVZqow0TGgodKvBKpoyXvIBEoOaFSLKwkAVPpuRs9F257mNA36tlN7g2vFRxLITIUsjyQMUjZVznvcNKrZxttNsoBmqbrhrTVSFdtUtXQRAlo8gHuJ2j-7P-R_UNldB-5w</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Friedrich, Betina Maria</creator><creator>Marques, Juliana Charão</creator><creator>Olivo, Gema Ribeiro</creator><creator>Frantz, José Carlos</creator><creator>Joy, Brian</creator><creator>Queiroz, Waldemir José Alves</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8000-6212</orcidid></search><sort><creationdate>20200801</creationdate><title>Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite</title><author>Friedrich, Betina Maria ; Marques, Juliana Charão ; Olivo, Gema Ribeiro ; Frantz, José Carlos ; Joy, Brian ; Queiroz, Waldemir José Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-c08868c40bf7ad8bbfe33985dacac17a0baac106f8416d6b037ea6b7358418b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium magnesium silicates</topic><topic>Carbon dioxide</topic><topic>Carbonates</topic><topic>Chalcopyrite</topic><topic>Chromite</topic><topic>Contamination</topic><topic>Crystallization</topic><topic>Diopside</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Droplets</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Entrapment</topic><topic>Geology</topic><topic>Inclusions</topic><topic>Intrusion</topic><topic>Lava</topic><topic>Magma</topic><topic>Magnesite</topic><topic>Magnesium carbonate</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Nickel ores</topic><topic>Olivine</topic><topic>Organic chemistry</topic><topic>Pentlandite</topic><topic>Petrogenesis</topic><topic>Pyrite</topic><topic>Saturation</topic><topic>Silicates</topic><topic>Slumping</topic><topic>Slurries</topic><topic>Solid solutions</topic><topic>Stratigraphy</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Volatiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedrich, Betina Maria</creatorcontrib><creatorcontrib>Marques, Juliana Charão</creatorcontrib><creatorcontrib>Olivo, Gema Ribeiro</creatorcontrib><creatorcontrib>Frantz, José Carlos</creatorcontrib><creatorcontrib>Joy, Brian</creatorcontrib><creatorcontrib>Queiroz, Waldemir José Alves</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedrich, Betina Maria</au><au>Marques, Juliana Charão</au><au>Olivo, Gema Ribeiro</au><au>Frantz, José Carlos</au><au>Joy, Brian</au><au>Queiroz, Waldemir José Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>55</volume><issue>6</issue><spage>1105</spage><epage>1126</epage><pages>1105-1126</pages><issn>0026-4598</issn><eissn>1432-1866</eissn><abstract>The Jacurici Complex hosts the largest chromite deposit in Brazil in an up to 8-m-thick chromitite layer within a tectonically segmented 300-m-thick intrusion. The ore has been interpreted as the result of crustal contamination-driven crystallization in a magma conduit. This study addresses the stratigraphy, mineralogical and textural relationships, and mineral chemistry of the Monte Alegre Sul segment focusing on chromite-hosted inclusions from the Main Chromitite Layer to understand the role of volatiles in the genesis of the massive chromitite. Silicate inclusions (enstatite, phlogopite, magnesiohornblende, diopside and olivine) are commonly monomineralic and sub- to euhedral, and crystallized prior to, or coeval with, the chromite crystallization. Carbonate inclusions (dolomite and magnesite) are irregular or have negative crystal shapes, suggesting entrapment as melt droplets. Sulfides (pentlandite, millerite, heazlewoodite, polydymite, pyrite, and chalcopyrite) are often polymineralic, irregular, or hexagonal-shaped, indicating entrapment as sulfide melt and as monosulfide solid solution. The inclusions indicate an H
2
O- and S-saturated resident magma with immiscible droplets of carbonate melt during chromite crystallization. Inclusion-rich and inclusion-free chromites that occur together have similar compositions and are considered to have formed from the same magma in response to variations in the degree of Cr saturation. Hot primitive magma might have heated and mobilized CO
2
and probably water from devolatized and assimilated carbonate-rich wall rocks, increasing
f
O
2
and triggering chromite crystallization. We propose that the formation of the chromitite layer started as in situ crystallization with additional material added by slumping of locally remobilized chromite slurries, facilitated by the presence of volatiles.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-019-00917-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8000-6212</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2020-08, Vol.55 (6), p.1105-1126 |
issn | 0026-4598 1432-1866 |
language | eng |
recordid | cdi_proquest_journals_2277754059 |
source | SpringerLink Journals - AutoHoldings |
subjects | Calcium magnesium silicates Carbon dioxide Carbonates Chalcopyrite Chromite Contamination Crystallization Diopside Dolomite Dolostone Droplets Earth and Environmental Science Earth Sciences Entrapment Geology Inclusions Intrusion Lava Magma Magnesite Magnesium carbonate Mineral Resources Mineralogy Nickel ores Olivine Organic chemistry Pentlandite Petrogenesis Pyrite Saturation Silicates Slumping Slurries Solid solutions Stratigraphy Sulfides Sulphides Volatiles |
title | Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Petrogenesis%20of%20the%20massive%20chromitite%20layer%20from%20the%20Jacurici%20Complex,%20Brazil:%20evidence%20from%20inclusions%20in%20chromite&rft.jtitle=Mineralium%20deposita&rft.au=Friedrich,%20Betina%20Maria&rft.date=2020-08-01&rft.volume=55&rft.issue=6&rft.spage=1105&rft.epage=1126&rft.pages=1105-1126&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-019-00917-0&rft_dat=%3Cproquest_cross%3E2277754059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277754059&rft_id=info:pmid/&rfr_iscdi=true |