Reservoir-size dependent learning in analogue neural networks

The implementation of artificial neural networks in hardware substrates is a major interdisciplinary enterprise. Well suited candidates for physical implementations must combine nonlinear neurons with dedicated and efficient hardware solutions for both connectivity and training. Reservoir computing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Porte, Xavier, Andreoli, Louis, Jacquot, Maxime, Larger, Laurent, Brunner, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Porte, Xavier
Andreoli, Louis
Jacquot, Maxime
Larger, Laurent
Brunner, Daniel
description The implementation of artificial neural networks in hardware substrates is a major interdisciplinary enterprise. Well suited candidates for physical implementations must combine nonlinear neurons with dedicated and efficient hardware solutions for both connectivity and training. Reservoir computing addresses the problems related with the network connectivity and training in an elegant and efficient way. However, important questions regarding impact of reservoir size and learning routines on the convergence-speed during learning remain unaddressed. Here, we study in detail the learning process of a recently demonstrated photonic neural network based on a reservoir. We use a greedy algorithm to train our neural network for the task of chaotic signals prediction and analyze the learning-error landscape. Our results unveil fundamental properties of the system's optimization hyperspace. Particularly, we determine the convergence speed of learning as a function of reservoir size and find exceptional, close to linear scaling. This linear dependence, together with our parallel diffractive coupling, represent optimal scaling conditions for our photonic neural network scheme.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2277747039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277747039</sourcerecordid><originalsourceid>FETCH-proquest_journals_22777470393</originalsourceid><addsrcrecordid>eNqNy7EKwjAQgOEgCBbtOwScCzFpjQ5OojiLewn0LKnhUu8SBZ_eDj6A07f8_0wU2phNtau1XoiSeVBK6a3VTWMKcbgCA72ip4r9B2QHI2AHmGQAR-ixlx6lQxdin0EiZHJhIr0jPXgl5ncXGMqfS7E-n27HSzVSfGbg1A4x0zRzq7W1trbK7M1_1RfV0Ti5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277747039</pqid></control><display><type>article</type><title>Reservoir-size dependent learning in analogue neural networks</title><source>Free E- Journals</source><creator>Porte, Xavier ; Andreoli, Louis ; Jacquot, Maxime ; Larger, Laurent ; Brunner, Daniel</creator><creatorcontrib>Porte, Xavier ; Andreoli, Louis ; Jacquot, Maxime ; Larger, Laurent ; Brunner, Daniel</creatorcontrib><description>The implementation of artificial neural networks in hardware substrates is a major interdisciplinary enterprise. Well suited candidates for physical implementations must combine nonlinear neurons with dedicated and efficient hardware solutions for both connectivity and training. Reservoir computing addresses the problems related with the network connectivity and training in an elegant and efficient way. However, important questions regarding impact of reservoir size and learning routines on the convergence-speed during learning remain unaddressed. Here, we study in detail the learning process of a recently demonstrated photonic neural network based on a reservoir. We use a greedy algorithm to train our neural network for the task of chaotic signals prediction and analyze the learning-error landscape. Our results unveil fundamental properties of the system's optimization hyperspace. Particularly, we determine the convergence speed of learning as a function of reservoir size and find exceptional, close to linear scaling. This linear dependence, together with our parallel diffractive coupling, represent optimal scaling conditions for our photonic neural network scheme.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Convergence ; Dependence ; Error analysis ; Greedy algorithms ; Hardware ; Hyperspaces ; Learning theory ; Neural networks ; Optimization ; Photonics ; Scaling ; Substrates ; Training</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Porte, Xavier</creatorcontrib><creatorcontrib>Andreoli, Louis</creatorcontrib><creatorcontrib>Jacquot, Maxime</creatorcontrib><creatorcontrib>Larger, Laurent</creatorcontrib><creatorcontrib>Brunner, Daniel</creatorcontrib><title>Reservoir-size dependent learning in analogue neural networks</title><title>arXiv.org</title><description>The implementation of artificial neural networks in hardware substrates is a major interdisciplinary enterprise. Well suited candidates for physical implementations must combine nonlinear neurons with dedicated and efficient hardware solutions for both connectivity and training. Reservoir computing addresses the problems related with the network connectivity and training in an elegant and efficient way. However, important questions regarding impact of reservoir size and learning routines on the convergence-speed during learning remain unaddressed. Here, we study in detail the learning process of a recently demonstrated photonic neural network based on a reservoir. We use a greedy algorithm to train our neural network for the task of chaotic signals prediction and analyze the learning-error landscape. Our results unveil fundamental properties of the system's optimization hyperspace. Particularly, we determine the convergence speed of learning as a function of reservoir size and find exceptional, close to linear scaling. This linear dependence, together with our parallel diffractive coupling, represent optimal scaling conditions for our photonic neural network scheme.</description><subject>Artificial neural networks</subject><subject>Convergence</subject><subject>Dependence</subject><subject>Error analysis</subject><subject>Greedy algorithms</subject><subject>Hardware</subject><subject>Hyperspaces</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Photonics</subject><subject>Scaling</subject><subject>Substrates</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy7EKwjAQgOEgCBbtOwScCzFpjQ5OojiLewn0LKnhUu8SBZ_eDj6A07f8_0wU2phNtau1XoiSeVBK6a3VTWMKcbgCA72ip4r9B2QHI2AHmGQAR-ixlx6lQxdin0EiZHJhIr0jPXgl5ncXGMqfS7E-n27HSzVSfGbg1A4x0zRzq7W1trbK7M1_1RfV0Ti5</recordid><startdate>20190723</startdate><enddate>20190723</enddate><creator>Porte, Xavier</creator><creator>Andreoli, Louis</creator><creator>Jacquot, Maxime</creator><creator>Larger, Laurent</creator><creator>Brunner, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190723</creationdate><title>Reservoir-size dependent learning in analogue neural networks</title><author>Porte, Xavier ; Andreoli, Louis ; Jacquot, Maxime ; Larger, Laurent ; Brunner, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22777470393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Convergence</topic><topic>Dependence</topic><topic>Error analysis</topic><topic>Greedy algorithms</topic><topic>Hardware</topic><topic>Hyperspaces</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Photonics</topic><topic>Scaling</topic><topic>Substrates</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Porte, Xavier</creatorcontrib><creatorcontrib>Andreoli, Louis</creatorcontrib><creatorcontrib>Jacquot, Maxime</creatorcontrib><creatorcontrib>Larger, Laurent</creatorcontrib><creatorcontrib>Brunner, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porte, Xavier</au><au>Andreoli, Louis</au><au>Jacquot, Maxime</au><au>Larger, Laurent</au><au>Brunner, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reservoir-size dependent learning in analogue neural networks</atitle><jtitle>arXiv.org</jtitle><date>2019-07-23</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The implementation of artificial neural networks in hardware substrates is a major interdisciplinary enterprise. Well suited candidates for physical implementations must combine nonlinear neurons with dedicated and efficient hardware solutions for both connectivity and training. Reservoir computing addresses the problems related with the network connectivity and training in an elegant and efficient way. However, important questions regarding impact of reservoir size and learning routines on the convergence-speed during learning remain unaddressed. Here, we study in detail the learning process of a recently demonstrated photonic neural network based on a reservoir. We use a greedy algorithm to train our neural network for the task of chaotic signals prediction and analyze the learning-error landscape. Our results unveil fundamental properties of the system's optimization hyperspace. Particularly, we determine the convergence speed of learning as a function of reservoir size and find exceptional, close to linear scaling. This linear dependence, together with our parallel diffractive coupling, represent optimal scaling conditions for our photonic neural network scheme.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2277747039
source Free E- Journals
subjects Artificial neural networks
Convergence
Dependence
Error analysis
Greedy algorithms
Hardware
Hyperspaces
Learning theory
Neural networks
Optimization
Photonics
Scaling
Substrates
Training
title Reservoir-size dependent learning in analogue neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reservoir-size%20dependent%20learning%20in%20analogue%20neural%20networks&rft.jtitle=arXiv.org&rft.au=Porte,%20Xavier&rft.date=2019-07-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2277747039%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277747039&rft_id=info:pmid/&rfr_iscdi=true