On the Cauchy problem of compressible full Hall-MHD equations

This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2019-10, Vol.70 (5), p.1-22, Article 139
Hauptverfasser: Lai, Suhua, Xu, Xinying, Zhang, Jianwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 5
container_start_page 1
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 70
creator Lai, Suhua
Xu, Xinying
Zhang, Jianwen
description This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H 1 . As a by-product of the uniform estimates, the vanishing limit of Hall coefficient is also justified.
doi_str_mv 10.1007/s00033-019-1178-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277508095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277508095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6029116e56732aa26e7862abb1a868fbacb463d6979538ad235bd56ff3d835053</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqXwAGyWmA3HdnwbGFC5FKmoC8yWk9i0VZq0djK0T4-rIDExHeno-8_lQ-iWwj0FUA8JADgnQA2hVGlyPEMTWjAgBrg5RxOAoiCMKXGJrlLaZFpR4BP0uGxxv_J45oZqdcC72JWN3-Iu4Krb7qJPaZ0bOAxNg-euacjH_Bn7_eD6ddema3QRXJP8zW-doq_Xl8_ZnCyWb--zpwWpuGY9kcAMpdILqThzjkmvtGSuLKnTUofSVWUheS2NMoJrVzMuylrIEHituQDBp-hunJvv2w8-9XbTDbHNK23-SQnQYE4UHakqdilFH-wurrcuHiwFe7JkR0s2W7InS_aYM2zMpMy23z7-Tf4_9ANBJmio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277508095</pqid></control><display><type>article</type><title>On the Cauchy problem of compressible full Hall-MHD equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lai, Suhua ; Xu, Xinying ; Zhang, Jianwen</creator><creatorcontrib>Lai, Suhua ; Xu, Xinying ; Zhang, Jianwen</creatorcontrib><description>This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H 1 . As a by-product of the uniform estimates, the vanishing limit of Hall coefficient is also justified.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-019-1178-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Cauchy problems ; Compressibility ; Decay rate ; Engineering ; Hall effect ; Mathematical analysis ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2019-10, Vol.70 (5), p.1-22, Article 139</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6029116e56732aa26e7862abb1a868fbacb463d6979538ad235bd56ff3d835053</citedby><cites>FETCH-LOGICAL-c382t-6029116e56732aa26e7862abb1a868fbacb463d6979538ad235bd56ff3d835053</cites><orcidid>0000-0001-6094-4415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-019-1178-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-019-1178-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lai, Suhua</creatorcontrib><creatorcontrib>Xu, Xinying</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><title>On the Cauchy problem of compressible full Hall-MHD equations</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H 1 . As a by-product of the uniform estimates, the vanishing limit of Hall coefficient is also justified.</description><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>Decay rate</subject><subject>Engineering</subject><subject>Hall effect</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqXwAGyWmA3HdnwbGFC5FKmoC8yWk9i0VZq0djK0T4-rIDExHeno-8_lQ-iWwj0FUA8JADgnQA2hVGlyPEMTWjAgBrg5RxOAoiCMKXGJrlLaZFpR4BP0uGxxv_J45oZqdcC72JWN3-Iu4Krb7qJPaZ0bOAxNg-euacjH_Bn7_eD6ddema3QRXJP8zW-doq_Xl8_ZnCyWb--zpwWpuGY9kcAMpdILqThzjkmvtGSuLKnTUofSVWUheS2NMoJrVzMuylrIEHituQDBp-hunJvv2w8-9XbTDbHNK23-SQnQYE4UHakqdilFH-wurrcuHiwFe7JkR0s2W7InS_aYM2zMpMy23z7-Tf4_9ANBJmio</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lai, Suhua</creator><creator>Xu, Xinying</creator><creator>Zhang, Jianwen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6094-4415</orcidid></search><sort><creationdate>20191001</creationdate><title>On the Cauchy problem of compressible full Hall-MHD equations</title><author>Lai, Suhua ; Xu, Xinying ; Zhang, Jianwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6029116e56732aa26e7862abb1a868fbacb463d6979538ad235bd56ff3d835053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>Decay rate</topic><topic>Engineering</topic><topic>Hall effect</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Suhua</creatorcontrib><creatorcontrib>Xu, Xinying</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Suhua</au><au>Xu, Xinying</au><au>Zhang, Jianwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Cauchy problem of compressible full Hall-MHD equations</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>70</volume><issue>5</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><artnum>139</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H 1 . As a by-product of the uniform estimates, the vanishing limit of Hall coefficient is also justified.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-019-1178-z</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6094-4415</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2019-10, Vol.70 (5), p.1-22, Article 139
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2277508095
source SpringerLink Journals - AutoHoldings
subjects Boundary value problems
Cauchy problems
Compressibility
Decay rate
Engineering
Hall effect
Mathematical analysis
Mathematical Methods in Physics
Theoretical and Applied Mechanics
title On the Cauchy problem of compressible full Hall-MHD equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Cauchy%20problem%20of%20compressible%20full%20Hall-MHD%20equations&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Lai,%20Suhua&rft.date=2019-10-01&rft.volume=70&rft.issue=5&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.artnum=139&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-019-1178-z&rft_dat=%3Cproquest_cross%3E2277508095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277508095&rft_id=info:pmid/&rfr_iscdi=true