On the Cauchy problem of compressible full Hall-MHD equations
This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in H...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2019-10, Vol.70 (5), p.1-22, Article 139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 70 |
creator | Lai, Suhua Xu, Xinying Zhang, Jianwen |
description | This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in
H
1
. As a by-product of the uniform estimates, the vanishing limit of Hall coefficient is also justified. |
doi_str_mv | 10.1007/s00033-019-1178-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277508095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277508095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-6029116e56732aa26e7862abb1a868fbacb463d6979538ad235bd56ff3d835053</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqXwAGyWmA3HdnwbGFC5FKmoC8yWk9i0VZq0djK0T4-rIDExHeno-8_lQ-iWwj0FUA8JADgnQA2hVGlyPEMTWjAgBrg5RxOAoiCMKXGJrlLaZFpR4BP0uGxxv_J45oZqdcC72JWN3-Iu4Krb7qJPaZ0bOAxNg-euacjH_Bn7_eD6ddema3QRXJP8zW-doq_Xl8_ZnCyWb--zpwWpuGY9kcAMpdILqThzjkmvtGSuLKnTUofSVWUheS2NMoJrVzMuylrIEHituQDBp-hunJvv2w8-9XbTDbHNK23-SQnQYE4UHakqdilFH-wurrcuHiwFe7JkR0s2W7InS_aYM2zMpMy23z7-Tf4_9ANBJmio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277508095</pqid></control><display><type>article</type><title>On the Cauchy problem of compressible full Hall-MHD equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lai, Suhua ; Xu, Xinying ; Zhang, Jianwen</creator><creatorcontrib>Lai, Suhua ; Xu, Xinying ; Zhang, Jianwen</creatorcontrib><description>This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in
H
1
. As a by-product of the uniform estimates, the vanishing limit of Hall coefficient is also justified.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-019-1178-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Cauchy problems ; Compressibility ; Decay rate ; Engineering ; Hall effect ; Mathematical analysis ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2019-10, Vol.70 (5), p.1-22, Article 139</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-6029116e56732aa26e7862abb1a868fbacb463d6979538ad235bd56ff3d835053</citedby><cites>FETCH-LOGICAL-c382t-6029116e56732aa26e7862abb1a868fbacb463d6979538ad235bd56ff3d835053</cites><orcidid>0000-0001-6094-4415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-019-1178-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-019-1178-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lai, Suhua</creatorcontrib><creatorcontrib>Xu, Xinying</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><title>On the Cauchy problem of compressible full Hall-MHD equations</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in
H
1
. As a by-product of the uniform estimates, the vanishing limit of Hall coefficient is also justified.</description><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>Decay rate</subject><subject>Engineering</subject><subject>Hall effect</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqXwAGyWmA3HdnwbGFC5FKmoC8yWk9i0VZq0djK0T4-rIDExHeno-8_lQ-iWwj0FUA8JADgnQA2hVGlyPEMTWjAgBrg5RxOAoiCMKXGJrlLaZFpR4BP0uGxxv_J45oZqdcC72JWN3-Iu4Krb7qJPaZ0bOAxNg-euacjH_Bn7_eD6ddema3QRXJP8zW-doq_Xl8_ZnCyWb--zpwWpuGY9kcAMpdILqThzjkmvtGSuLKnTUofSVWUheS2NMoJrVzMuylrIEHituQDBp-hunJvv2w8-9XbTDbHNK23-SQnQYE4UHakqdilFH-wurrcuHiwFe7JkR0s2W7InS_aYM2zMpMy23z7-Tf4_9ANBJmio</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lai, Suhua</creator><creator>Xu, Xinying</creator><creator>Zhang, Jianwen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6094-4415</orcidid></search><sort><creationdate>20191001</creationdate><title>On the Cauchy problem of compressible full Hall-MHD equations</title><author>Lai, Suhua ; Xu, Xinying ; Zhang, Jianwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-6029116e56732aa26e7862abb1a868fbacb463d6979538ad235bd56ff3d835053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>Decay rate</topic><topic>Engineering</topic><topic>Hall effect</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Suhua</creatorcontrib><creatorcontrib>Xu, Xinying</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Suhua</au><au>Xu, Xinying</au><au>Zhang, Jianwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Cauchy problem of compressible full Hall-MHD equations</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>70</volume><issue>5</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><artnum>139</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>This paper is concerned with an initial value problem of the compressible full Hall-MHD equations in three-dimensional whole space. Both the global existence and the optimal decay rates of solutions are obtained, when the smooth initial data are sufficiently close to the non-vacuum equilibrium in
H
1
. As a by-product of the uniform estimates, the vanishing limit of Hall coefficient is also justified.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-019-1178-z</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6094-4415</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2019-10, Vol.70 (5), p.1-22, Article 139 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2277508095 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary value problems Cauchy problems Compressibility Decay rate Engineering Hall effect Mathematical analysis Mathematical Methods in Physics Theoretical and Applied Mechanics |
title | On the Cauchy problem of compressible full Hall-MHD equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Cauchy%20problem%20of%20compressible%20full%20Hall-MHD%20equations&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Lai,%20Suhua&rft.date=2019-10-01&rft.volume=70&rft.issue=5&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.artnum=139&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-019-1178-z&rft_dat=%3Cproquest_cross%3E2277508095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277508095&rft_id=info:pmid/&rfr_iscdi=true |