Nanoparticle design by gas-phase synthesis

Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in physics: X 2016-01, Vol.1 (1), p.81-100
Hauptverfasser: Grammatikopoulos, Panagiotis, Steinhauer, Stephan, Vernieres, Jerome, Singh, Vidyadhar, Sowwan, Mukhles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 81
container_title Advances in physics: X
container_volume 1
creator Grammatikopoulos, Panagiotis
Steinhauer, Stephan
Vernieres, Jerome
Singh, Vidyadhar
Sowwan, Mukhles
description Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties.
doi_str_mv 10.1080/23746149.2016.1142829
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277431530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277431530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-42929e5f82e77dfa80e5f83942982cc428e636e40baa6bfe3086cb30e23d369e3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu5PEArehK5Jpk3Tm7L4BYte9BzSdLLbpdvUpIv035uyK3jyNDNv3nszPEKuGV0yKukdhyITLCuXnDKxZCzjkpdnZDbh6bQ4_9NfkkUIO0ojtYhimJHbN925XvuhMS0mNYZm0yXVmGx0SPutDpiEsRu2EQ9X5MLqNuDiVOfk8-nxY_WSrt-fX1cP69SAzIc04yUvMbeSY1HUVks6DVBGXHJj4n8oQGBGK61FZRGoFKYCihxqECXCnNwcfXvvvg4YBrVzB9_Fk4rzosiA5UAjKz-yjHcheLSq981e-1ExqqZk1G8yakpGnZKJuvujrums83v97Xxbq0GPrfPW6840QcH_Fj_0lWhL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277431530</pqid></control><display><type>article</type><title>Nanoparticle design by gas-phase synthesis</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Grammatikopoulos, Panagiotis ; Steinhauer, Stephan ; Vernieres, Jerome ; Singh, Vidyadhar ; Sowwan, Mukhles</creator><creatorcontrib>Grammatikopoulos, Panagiotis ; Steinhauer, Stephan ; Vernieres, Jerome ; Singh, Vidyadhar ; Sowwan, Mukhles</creatorcontrib><description>Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties.</description><identifier>ISSN: 2374-6149</identifier><identifier>EISSN: 2374-6149</identifier><identifier>DOI: 10.1080/23746149.2016.1142829</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>61.46.Bc Structure of clusters ; 68.37.-d microscopy of surfaces , interfaces and thin films ; 75.50.Tt Fine-particle systems ; 81.16.-c Methods of Micro and nano fabrication and processing ; catalytic nanoparticles ; Chemical properties ; inert gas condensation ; magnetic nanoparticles ; Magnetron sputtering ; nanoclusters ; Nanoparticles ; plasmonic nanoparticles ; Production methods ; Reaction kinetics ; Synthesis gas</subject><ispartof>Advances in physics: X, 2016-01, Vol.1 (1), p.81-100</ispartof><rights>2016 The Author(s). Published by Taylor &amp; Francis 2016</rights><rights>2016 The Author(s). Published by Taylor &amp; Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-42929e5f82e77dfa80e5f83942982cc428e636e40baa6bfe3086cb30e23d369e3</citedby><cites>FETCH-LOGICAL-c385t-42929e5f82e77dfa80e5f83942982cc428e636e40baa6bfe3086cb30e23d369e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23746149.2016.1142829$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/23746149.2016.1142829$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Grammatikopoulos, Panagiotis</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Vernieres, Jerome</creatorcontrib><creatorcontrib>Singh, Vidyadhar</creatorcontrib><creatorcontrib>Sowwan, Mukhles</creatorcontrib><title>Nanoparticle design by gas-phase synthesis</title><title>Advances in physics: X</title><description>Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties.</description><subject>61.46.Bc Structure of clusters</subject><subject>68.37.-d microscopy of surfaces , interfaces and thin films</subject><subject>75.50.Tt Fine-particle systems</subject><subject>81.16.-c Methods of Micro and nano fabrication and processing</subject><subject>catalytic nanoparticles</subject><subject>Chemical properties</subject><subject>inert gas condensation</subject><subject>magnetic nanoparticles</subject><subject>Magnetron sputtering</subject><subject>nanoclusters</subject><subject>Nanoparticles</subject><subject>plasmonic nanoparticles</subject><subject>Production methods</subject><subject>Reaction kinetics</subject><subject>Synthesis gas</subject><issn>2374-6149</issn><issn>2374-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LxDAQDaLgsu5PEArehK5Jpk3Tm7L4BYte9BzSdLLbpdvUpIv035uyK3jyNDNv3nszPEKuGV0yKukdhyITLCuXnDKxZCzjkpdnZDbh6bQ4_9NfkkUIO0ojtYhimJHbN925XvuhMS0mNYZm0yXVmGx0SPutDpiEsRu2EQ9X5MLqNuDiVOfk8-nxY_WSrt-fX1cP69SAzIc04yUvMbeSY1HUVks6DVBGXHJj4n8oQGBGK61FZRGoFKYCihxqECXCnNwcfXvvvg4YBrVzB9_Fk4rzosiA5UAjKz-yjHcheLSq981e-1ExqqZk1G8yakpGnZKJuvujrums83v97Xxbq0GPrfPW6840QcH_Fj_0lWhL</recordid><startdate>20160102</startdate><enddate>20160102</enddate><creator>Grammatikopoulos, Panagiotis</creator><creator>Steinhauer, Stephan</creator><creator>Vernieres, Jerome</creator><creator>Singh, Vidyadhar</creator><creator>Sowwan, Mukhles</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160102</creationdate><title>Nanoparticle design by gas-phase synthesis</title><author>Grammatikopoulos, Panagiotis ; Steinhauer, Stephan ; Vernieres, Jerome ; Singh, Vidyadhar ; Sowwan, Mukhles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-42929e5f82e77dfa80e5f83942982cc428e636e40baa6bfe3086cb30e23d369e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>61.46.Bc Structure of clusters</topic><topic>68.37.-d microscopy of surfaces , interfaces and thin films</topic><topic>75.50.Tt Fine-particle systems</topic><topic>81.16.-c Methods of Micro and nano fabrication and processing</topic><topic>catalytic nanoparticles</topic><topic>Chemical properties</topic><topic>inert gas condensation</topic><topic>magnetic nanoparticles</topic><topic>Magnetron sputtering</topic><topic>nanoclusters</topic><topic>Nanoparticles</topic><topic>plasmonic nanoparticles</topic><topic>Production methods</topic><topic>Reaction kinetics</topic><topic>Synthesis gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grammatikopoulos, Panagiotis</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Vernieres, Jerome</creatorcontrib><creatorcontrib>Singh, Vidyadhar</creatorcontrib><creatorcontrib>Sowwan, Mukhles</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in physics: X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grammatikopoulos, Panagiotis</au><au>Steinhauer, Stephan</au><au>Vernieres, Jerome</au><au>Singh, Vidyadhar</au><au>Sowwan, Mukhles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle design by gas-phase synthesis</atitle><jtitle>Advances in physics: X</jtitle><date>2016-01-02</date><risdate>2016</risdate><volume>1</volume><issue>1</issue><spage>81</spage><epage>100</epage><pages>81-100</pages><issn>2374-6149</issn><eissn>2374-6149</eissn><abstract>Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/23746149.2016.1142829</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2374-6149
ispartof Advances in physics: X, 2016-01, Vol.1 (1), p.81-100
issn 2374-6149
2374-6149
language eng
recordid cdi_proquest_journals_2277431530
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 61.46.Bc Structure of clusters
68.37.-d microscopy of surfaces , interfaces and thin films
75.50.Tt Fine-particle systems
81.16.-c Methods of Micro and nano fabrication and processing
catalytic nanoparticles
Chemical properties
inert gas condensation
magnetic nanoparticles
Magnetron sputtering
nanoclusters
Nanoparticles
plasmonic nanoparticles
Production methods
Reaction kinetics
Synthesis gas
title Nanoparticle design by gas-phase synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20design%20by%20gas-phase%20synthesis&rft.jtitle=Advances%20in%20physics:%20X&rft.au=Grammatikopoulos,%20Panagiotis&rft.date=2016-01-02&rft.volume=1&rft.issue=1&rft.spage=81&rft.epage=100&rft.pages=81-100&rft.issn=2374-6149&rft.eissn=2374-6149&rft_id=info:doi/10.1080/23746149.2016.1142829&rft_dat=%3Cproquest_cross%3E2277431530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277431530&rft_id=info:pmid/&rfr_iscdi=true