Nanoparticle design by gas-phase synthesis
Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication technique...
Gespeichert in:
Veröffentlicht in: | Advances in physics: X 2016-01, Vol.1 (1), p.81-100 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Advances in physics: X |
container_volume | 1 |
creator | Grammatikopoulos, Panagiotis Steinhauer, Stephan Vernieres, Jerome Singh, Vidyadhar Sowwan, Mukhles |
description | Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties. |
doi_str_mv | 10.1080/23746149.2016.1142829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277431530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277431530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-42929e5f82e77dfa80e5f83942982cc428e636e40baa6bfe3086cb30e23d369e3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu5PEArehK5Jpk3Tm7L4BYte9BzSdLLbpdvUpIv035uyK3jyNDNv3nszPEKuGV0yKukdhyITLCuXnDKxZCzjkpdnZDbh6bQ4_9NfkkUIO0ojtYhimJHbN925XvuhMS0mNYZm0yXVmGx0SPutDpiEsRu2EQ9X5MLqNuDiVOfk8-nxY_WSrt-fX1cP69SAzIc04yUvMbeSY1HUVks6DVBGXHJj4n8oQGBGK61FZRGoFKYCihxqECXCnNwcfXvvvg4YBrVzB9_Fk4rzosiA5UAjKz-yjHcheLSq981e-1ExqqZk1G8yakpGnZKJuvujrums83v97Xxbq0GPrfPW6840QcH_Fj_0lWhL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277431530</pqid></control><display><type>article</type><title>Nanoparticle design by gas-phase synthesis</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Grammatikopoulos, Panagiotis ; Steinhauer, Stephan ; Vernieres, Jerome ; Singh, Vidyadhar ; Sowwan, Mukhles</creator><creatorcontrib>Grammatikopoulos, Panagiotis ; Steinhauer, Stephan ; Vernieres, Jerome ; Singh, Vidyadhar ; Sowwan, Mukhles</creatorcontrib><description>Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties.</description><identifier>ISSN: 2374-6149</identifier><identifier>EISSN: 2374-6149</identifier><identifier>DOI: 10.1080/23746149.2016.1142829</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>61.46.Bc Structure of clusters ; 68.37.-d microscopy of surfaces , interfaces and thin films ; 75.50.Tt Fine-particle systems ; 81.16.-c Methods of Micro and nano fabrication and processing ; catalytic nanoparticles ; Chemical properties ; inert gas condensation ; magnetic nanoparticles ; Magnetron sputtering ; nanoclusters ; Nanoparticles ; plasmonic nanoparticles ; Production methods ; Reaction kinetics ; Synthesis gas</subject><ispartof>Advances in physics: X, 2016-01, Vol.1 (1), p.81-100</ispartof><rights>2016 The Author(s). Published by Taylor & Francis 2016</rights><rights>2016 The Author(s). Published by Taylor & Francis. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-42929e5f82e77dfa80e5f83942982cc428e636e40baa6bfe3086cb30e23d369e3</citedby><cites>FETCH-LOGICAL-c385t-42929e5f82e77dfa80e5f83942982cc428e636e40baa6bfe3086cb30e23d369e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23746149.2016.1142829$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/23746149.2016.1142829$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Grammatikopoulos, Panagiotis</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Vernieres, Jerome</creatorcontrib><creatorcontrib>Singh, Vidyadhar</creatorcontrib><creatorcontrib>Sowwan, Mukhles</creatorcontrib><title>Nanoparticle design by gas-phase synthesis</title><title>Advances in physics: X</title><description>Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties.</description><subject>61.46.Bc Structure of clusters</subject><subject>68.37.-d microscopy of surfaces , interfaces and thin films</subject><subject>75.50.Tt Fine-particle systems</subject><subject>81.16.-c Methods of Micro and nano fabrication and processing</subject><subject>catalytic nanoparticles</subject><subject>Chemical properties</subject><subject>inert gas condensation</subject><subject>magnetic nanoparticles</subject><subject>Magnetron sputtering</subject><subject>nanoclusters</subject><subject>Nanoparticles</subject><subject>plasmonic nanoparticles</subject><subject>Production methods</subject><subject>Reaction kinetics</subject><subject>Synthesis gas</subject><issn>2374-6149</issn><issn>2374-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LxDAQDaLgsu5PEArehK5Jpk3Tm7L4BYte9BzSdLLbpdvUpIv035uyK3jyNDNv3nszPEKuGV0yKukdhyITLCuXnDKxZCzjkpdnZDbh6bQ4_9NfkkUIO0ojtYhimJHbN925XvuhMS0mNYZm0yXVmGx0SPutDpiEsRu2EQ9X5MLqNuDiVOfk8-nxY_WSrt-fX1cP69SAzIc04yUvMbeSY1HUVks6DVBGXHJj4n8oQGBGK61FZRGoFKYCihxqECXCnNwcfXvvvg4YBrVzB9_Fk4rzosiA5UAjKz-yjHcheLSq981e-1ExqqZk1G8yakpGnZKJuvujrums83v97Xxbq0GPrfPW6840QcH_Fj_0lWhL</recordid><startdate>20160102</startdate><enddate>20160102</enddate><creator>Grammatikopoulos, Panagiotis</creator><creator>Steinhauer, Stephan</creator><creator>Vernieres, Jerome</creator><creator>Singh, Vidyadhar</creator><creator>Sowwan, Mukhles</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160102</creationdate><title>Nanoparticle design by gas-phase synthesis</title><author>Grammatikopoulos, Panagiotis ; Steinhauer, Stephan ; Vernieres, Jerome ; Singh, Vidyadhar ; Sowwan, Mukhles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-42929e5f82e77dfa80e5f83942982cc428e636e40baa6bfe3086cb30e23d369e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>61.46.Bc Structure of clusters</topic><topic>68.37.-d microscopy of surfaces , interfaces and thin films</topic><topic>75.50.Tt Fine-particle systems</topic><topic>81.16.-c Methods of Micro and nano fabrication and processing</topic><topic>catalytic nanoparticles</topic><topic>Chemical properties</topic><topic>inert gas condensation</topic><topic>magnetic nanoparticles</topic><topic>Magnetron sputtering</topic><topic>nanoclusters</topic><topic>Nanoparticles</topic><topic>plasmonic nanoparticles</topic><topic>Production methods</topic><topic>Reaction kinetics</topic><topic>Synthesis gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grammatikopoulos, Panagiotis</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Vernieres, Jerome</creatorcontrib><creatorcontrib>Singh, Vidyadhar</creatorcontrib><creatorcontrib>Sowwan, Mukhles</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in physics: X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grammatikopoulos, Panagiotis</au><au>Steinhauer, Stephan</au><au>Vernieres, Jerome</au><au>Singh, Vidyadhar</au><au>Sowwan, Mukhles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle design by gas-phase synthesis</atitle><jtitle>Advances in physics: X</jtitle><date>2016-01-02</date><risdate>2016</risdate><volume>1</volume><issue>1</issue><spage>81</spage><epage>100</epage><pages>81-100</pages><issn>2374-6149</issn><eissn>2374-6149</eissn><abstract>Gas-phase synthesis characterizes a class of bottom-up methods for producing multifunctional nanoparticles (NPs) from individual atoms or molecules. This review aims to summarize recent achievements using this approach, and compare its potential to other physical or chemical NP fabrication techniques. More specifically, emphasis is given to magnetron-sputter gas-phase condensation, since it allows for flexible growth of complex, sophisticated NPs, owing to the fast kinetics and non-equilibrium processes it entails. Nanoparticle synthesis is decomposed into four stages, i.e. aggregation, shell-coating, mass-filtration, and deposition. We present the formation of NPs of various functionalities for different applications, such as magnetic, plasmonic, catalytic and, gas-sensing, emphasizing on the primary dependence of each type on a different stage of the fabrication process, and their resultant physical and chemical properties.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/23746149.2016.1142829</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-6149 |
ispartof | Advances in physics: X, 2016-01, Vol.1 (1), p.81-100 |
issn | 2374-6149 2374-6149 |
language | eng |
recordid | cdi_proquest_journals_2277431530 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 61.46.Bc Structure of clusters 68.37.-d microscopy of surfaces , interfaces and thin films 75.50.Tt Fine-particle systems 81.16.-c Methods of Micro and nano fabrication and processing catalytic nanoparticles Chemical properties inert gas condensation magnetic nanoparticles Magnetron sputtering nanoclusters Nanoparticles plasmonic nanoparticles Production methods Reaction kinetics Synthesis gas |
title | Nanoparticle design by gas-phase synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20design%20by%20gas-phase%20synthesis&rft.jtitle=Advances%20in%20physics:%20X&rft.au=Grammatikopoulos,%20Panagiotis&rft.date=2016-01-02&rft.volume=1&rft.issue=1&rft.spage=81&rft.epage=100&rft.pages=81-100&rft.issn=2374-6149&rft.eissn=2374-6149&rft_id=info:doi/10.1080/23746149.2016.1142829&rft_dat=%3Cproquest_cross%3E2277431530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277431530&rft_id=info:pmid/&rfr_iscdi=true |