Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution
It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize hig...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019, Vol.7 (33), p.10173-10178 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10178 |
---|---|
container_issue | 33 |
container_start_page | 10173 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 7 |
creator | Kang, Sangmin Ja-Jung Koo Seo, Hongmin Truong, Quang Trung Park, Jong Bo Seong Chae Park Jung, Youngjin Sung-Pyo Cho Nam, Ki Tae Kim, Zee Hwan Hong, Byung Hee |
description | It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize highly polycrystalline molybdenum disulfide MoS2 bilayers with enhanced HER performance and material stability. This new method is based on metal organic chemical vapor deposition (MOCVD) followed by UV/ozone treatment to generate defects. The defect densities on MoS2 were identified by the increase in lifetime (∼76%) and intensity (∼15%) in photoluminescence (PL) as compared to those of pristine MoS2. Our fabrication and characterization methods can be further applied to optimize defect densities for catalytic effects in various transition metal dichalcogenide (TMDC) materials. |
doi_str_mv | 10.1039/c9tc02256b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2277331526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277331526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-75bc91935ada9ff54f6f4f6a178e049ee70220b2ed7cd9e21edb2970770d34923</originalsourceid><addsrcrecordid>eNo9UMtKxDAUDaLgMM7GLwi4rubRJs1SxscIIy7U9dAmN22GNhnT1MffG1G8cLiHc98XoXNKLinh6kqrpAljlWiP0IKRihSy4uXxP2fiFK2maU-y1VTUQi1QdwMWdCrAd84DRDD4MTwz_OFSj-EzgTdZOvQhhWEec8qkwWvAg7OQ3AjYhoh71_XFAWLmY_MT7b9MDB14DO-5LLngz9CJbYYJVn9-iV7vbl_Wm2L7dP-wvt4Wmgma8pKtVlTxqjGNsrYqrbAZDZU1kFIByHwgaRkYqY0CRsG0TEkiJTG8VIwv0cVv30MMbzNMabcPc_R55I4xKTmn-Q38G0XOWrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277331526</pqid></control><display><type>article</type><title>Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kang, Sangmin ; Ja-Jung Koo ; Seo, Hongmin ; Truong, Quang Trung ; Park, Jong Bo ; Seong Chae Park ; Jung, Youngjin ; Sung-Pyo Cho ; Nam, Ki Tae ; Kim, Zee Hwan ; Hong, Byung Hee</creator><creatorcontrib>Kang, Sangmin ; Ja-Jung Koo ; Seo, Hongmin ; Truong, Quang Trung ; Park, Jong Bo ; Seong Chae Park ; Jung, Youngjin ; Sung-Pyo Cho ; Nam, Ki Tae ; Kim, Zee Hwan ; Hong, Byung Hee</creatorcontrib><description>It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize highly polycrystalline molybdenum disulfide MoS2 bilayers with enhanced HER performance and material stability. This new method is based on metal organic chemical vapor deposition (MOCVD) followed by UV/ozone treatment to generate defects. The defect densities on MoS2 were identified by the increase in lifetime (∼76%) and intensity (∼15%) in photoluminescence (PL) as compared to those of pristine MoS2. Our fabrication and characterization methods can be further applied to optimize defect densities for catalytic effects in various transition metal dichalcogenide (TMDC) materials.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c9tc02256b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Argon ; Catalysis ; Defects ; Hydrogen evolution reactions ; Metalorganic chemical vapor deposition ; Molybdenum ; Molybdenum disulfide ; Organic chemicals ; Organic chemistry ; Photoluminescence ; Stability ; Transition metal compounds</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, Vol.7 (33), p.10173-10178</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-75bc91935ada9ff54f6f4f6a178e049ee70220b2ed7cd9e21edb2970770d34923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Kang, Sangmin</creatorcontrib><creatorcontrib>Ja-Jung Koo</creatorcontrib><creatorcontrib>Seo, Hongmin</creatorcontrib><creatorcontrib>Truong, Quang Trung</creatorcontrib><creatorcontrib>Park, Jong Bo</creatorcontrib><creatorcontrib>Seong Chae Park</creatorcontrib><creatorcontrib>Jung, Youngjin</creatorcontrib><creatorcontrib>Sung-Pyo Cho</creatorcontrib><creatorcontrib>Nam, Ki Tae</creatorcontrib><creatorcontrib>Kim, Zee Hwan</creatorcontrib><creatorcontrib>Hong, Byung Hee</creatorcontrib><title>Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize highly polycrystalline molybdenum disulfide MoS2 bilayers with enhanced HER performance and material stability. This new method is based on metal organic chemical vapor deposition (MOCVD) followed by UV/ozone treatment to generate defects. The defect densities on MoS2 were identified by the increase in lifetime (∼76%) and intensity (∼15%) in photoluminescence (PL) as compared to those of pristine MoS2. Our fabrication and characterization methods can be further applied to optimize defect densities for catalytic effects in various transition metal dichalcogenide (TMDC) materials.</description><subject>Argon</subject><subject>Catalysis</subject><subject>Defects</subject><subject>Hydrogen evolution reactions</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Photoluminescence</subject><subject>Stability</subject><subject>Transition metal compounds</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKxDAUDaLgMM7GLwi4rubRJs1SxscIIy7U9dAmN22GNhnT1MffG1G8cLiHc98XoXNKLinh6kqrpAljlWiP0IKRihSy4uXxP2fiFK2maU-y1VTUQi1QdwMWdCrAd84DRDD4MTwz_OFSj-EzgTdZOvQhhWEec8qkwWvAg7OQ3AjYhoh71_XFAWLmY_MT7b9MDB14DO-5LLngz9CJbYYJVn9-iV7vbl_Wm2L7dP-wvt4Wmgma8pKtVlTxqjGNsrYqrbAZDZU1kFIByHwgaRkYqY0CRsG0TEkiJTG8VIwv0cVv30MMbzNMabcPc_R55I4xKTmn-Q38G0XOWrs</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kang, Sangmin</creator><creator>Ja-Jung Koo</creator><creator>Seo, Hongmin</creator><creator>Truong, Quang Trung</creator><creator>Park, Jong Bo</creator><creator>Seong Chae Park</creator><creator>Jung, Youngjin</creator><creator>Sung-Pyo Cho</creator><creator>Nam, Ki Tae</creator><creator>Kim, Zee Hwan</creator><creator>Hong, Byung Hee</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution</title><author>Kang, Sangmin ; Ja-Jung Koo ; Seo, Hongmin ; Truong, Quang Trung ; Park, Jong Bo ; Seong Chae Park ; Jung, Youngjin ; Sung-Pyo Cho ; Nam, Ki Tae ; Kim, Zee Hwan ; Hong, Byung Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-75bc91935ada9ff54f6f4f6a178e049ee70220b2ed7cd9e21edb2970770d34923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Argon</topic><topic>Catalysis</topic><topic>Defects</topic><topic>Hydrogen evolution reactions</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Photoluminescence</topic><topic>Stability</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Sangmin</creatorcontrib><creatorcontrib>Ja-Jung Koo</creatorcontrib><creatorcontrib>Seo, Hongmin</creatorcontrib><creatorcontrib>Truong, Quang Trung</creatorcontrib><creatorcontrib>Park, Jong Bo</creatorcontrib><creatorcontrib>Seong Chae Park</creatorcontrib><creatorcontrib>Jung, Youngjin</creatorcontrib><creatorcontrib>Sung-Pyo Cho</creatorcontrib><creatorcontrib>Nam, Ki Tae</creatorcontrib><creatorcontrib>Kim, Zee Hwan</creatorcontrib><creatorcontrib>Hong, Byung Hee</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Sangmin</au><au>Ja-Jung Koo</au><au>Seo, Hongmin</au><au>Truong, Quang Trung</au><au>Park, Jong Bo</au><au>Seong Chae Park</au><au>Jung, Youngjin</au><au>Sung-Pyo Cho</au><au>Nam, Ki Tae</au><au>Kim, Zee Hwan</au><au>Hong, Byung Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>33</issue><spage>10173</spage><epage>10178</epage><pages>10173-10178</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize highly polycrystalline molybdenum disulfide MoS2 bilayers with enhanced HER performance and material stability. This new method is based on metal organic chemical vapor deposition (MOCVD) followed by UV/ozone treatment to generate defects. The defect densities on MoS2 were identified by the increase in lifetime (∼76%) and intensity (∼15%) in photoluminescence (PL) as compared to those of pristine MoS2. Our fabrication and characterization methods can be further applied to optimize defect densities for catalytic effects in various transition metal dichalcogenide (TMDC) materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9tc02256b</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, Vol.7 (33), p.10173-10178 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2277331526 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Argon Catalysis Defects Hydrogen evolution reactions Metalorganic chemical vapor deposition Molybdenum Molybdenum disulfide Organic chemicals Organic chemistry Photoluminescence Stability Transition metal compounds |
title | Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-engineered%20MoS2%20with%20extended%20photoluminescence%20lifetime%20for%20high-performance%20hydrogen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Kang,%20Sangmin&rft.date=2019&rft.volume=7&rft.issue=33&rft.spage=10173&rft.epage=10178&rft.pages=10173-10178&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c9tc02256b&rft_dat=%3Cproquest%3E2277331526%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277331526&rft_id=info:pmid/&rfr_iscdi=true |