Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution

It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019, Vol.7 (33), p.10173-10178
Hauptverfasser: Kang, Sangmin, Ja-Jung Koo, Seo, Hongmin, Truong, Quang Trung, Park, Jong Bo, Seong Chae Park, Jung, Youngjin, Sung-Pyo Cho, Nam, Ki Tae, Kim, Zee Hwan, Hong, Byung Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10178
container_issue 33
container_start_page 10173
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 7
creator Kang, Sangmin
Ja-Jung Koo
Seo, Hongmin
Truong, Quang Trung
Park, Jong Bo
Seong Chae Park
Jung, Youngjin
Sung-Pyo Cho
Nam, Ki Tae
Kim, Zee Hwan
Hong, Byung Hee
description It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize highly polycrystalline molybdenum disulfide MoS2 bilayers with enhanced HER performance and material stability. This new method is based on metal organic chemical vapor deposition (MOCVD) followed by UV/ozone treatment to generate defects. The defect densities on MoS2 were identified by the increase in lifetime (∼76%) and intensity (∼15%) in photoluminescence (PL) as compared to those of pristine MoS2. Our fabrication and characterization methods can be further applied to optimize defect densities for catalytic effects in various transition metal dichalcogenide (TMDC) materials.
doi_str_mv 10.1039/c9tc02256b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2277331526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277331526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-75bc91935ada9ff54f6f4f6a178e049ee70220b2ed7cd9e21edb2970770d34923</originalsourceid><addsrcrecordid>eNo9UMtKxDAUDaLgMM7GLwi4rubRJs1SxscIIy7U9dAmN22GNhnT1MffG1G8cLiHc98XoXNKLinh6kqrpAljlWiP0IKRihSy4uXxP2fiFK2maU-y1VTUQi1QdwMWdCrAd84DRDD4MTwz_OFSj-EzgTdZOvQhhWEec8qkwWvAg7OQ3AjYhoh71_XFAWLmY_MT7b9MDB14DO-5LLngz9CJbYYJVn9-iV7vbl_Wm2L7dP-wvt4Wmgma8pKtVlTxqjGNsrYqrbAZDZU1kFIByHwgaRkYqY0CRsG0TEkiJTG8VIwv0cVv30MMbzNMabcPc_R55I4xKTmn-Q38G0XOWrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277331526</pqid></control><display><type>article</type><title>Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kang, Sangmin ; Ja-Jung Koo ; Seo, Hongmin ; Truong, Quang Trung ; Park, Jong Bo ; Seong Chae Park ; Jung, Youngjin ; Sung-Pyo Cho ; Nam, Ki Tae ; Kim, Zee Hwan ; Hong, Byung Hee</creator><creatorcontrib>Kang, Sangmin ; Ja-Jung Koo ; Seo, Hongmin ; Truong, Quang Trung ; Park, Jong Bo ; Seong Chae Park ; Jung, Youngjin ; Sung-Pyo Cho ; Nam, Ki Tae ; Kim, Zee Hwan ; Hong, Byung Hee</creatorcontrib><description>It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize highly polycrystalline molybdenum disulfide MoS2 bilayers with enhanced HER performance and material stability. This new method is based on metal organic chemical vapor deposition (MOCVD) followed by UV/ozone treatment to generate defects. The defect densities on MoS2 were identified by the increase in lifetime (∼76%) and intensity (∼15%) in photoluminescence (PL) as compared to those of pristine MoS2. Our fabrication and characterization methods can be further applied to optimize defect densities for catalytic effects in various transition metal dichalcogenide (TMDC) materials.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c9tc02256b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Argon ; Catalysis ; Defects ; Hydrogen evolution reactions ; Metalorganic chemical vapor deposition ; Molybdenum ; Molybdenum disulfide ; Organic chemicals ; Organic chemistry ; Photoluminescence ; Stability ; Transition metal compounds</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, Vol.7 (33), p.10173-10178</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-75bc91935ada9ff54f6f4f6a178e049ee70220b2ed7cd9e21edb2970770d34923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Kang, Sangmin</creatorcontrib><creatorcontrib>Ja-Jung Koo</creatorcontrib><creatorcontrib>Seo, Hongmin</creatorcontrib><creatorcontrib>Truong, Quang Trung</creatorcontrib><creatorcontrib>Park, Jong Bo</creatorcontrib><creatorcontrib>Seong Chae Park</creatorcontrib><creatorcontrib>Jung, Youngjin</creatorcontrib><creatorcontrib>Sung-Pyo Cho</creatorcontrib><creatorcontrib>Nam, Ki Tae</creatorcontrib><creatorcontrib>Kim, Zee Hwan</creatorcontrib><creatorcontrib>Hong, Byung Hee</creatorcontrib><title>Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize highly polycrystalline molybdenum disulfide MoS2 bilayers with enhanced HER performance and material stability. This new method is based on metal organic chemical vapor deposition (MOCVD) followed by UV/ozone treatment to generate defects. The defect densities on MoS2 were identified by the increase in lifetime (∼76%) and intensity (∼15%) in photoluminescence (PL) as compared to those of pristine MoS2. Our fabrication and characterization methods can be further applied to optimize defect densities for catalytic effects in various transition metal dichalcogenide (TMDC) materials.</description><subject>Argon</subject><subject>Catalysis</subject><subject>Defects</subject><subject>Hydrogen evolution reactions</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Photoluminescence</subject><subject>Stability</subject><subject>Transition metal compounds</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKxDAUDaLgMM7GLwi4rubRJs1SxscIIy7U9dAmN22GNhnT1MffG1G8cLiHc98XoXNKLinh6kqrpAljlWiP0IKRihSy4uXxP2fiFK2maU-y1VTUQi1QdwMWdCrAd84DRDD4MTwz_OFSj-EzgTdZOvQhhWEec8qkwWvAg7OQ3AjYhoh71_XFAWLmY_MT7b9MDB14DO-5LLngz9CJbYYJVn9-iV7vbl_Wm2L7dP-wvt4Wmgma8pKtVlTxqjGNsrYqrbAZDZU1kFIByHwgaRkYqY0CRsG0TEkiJTG8VIwv0cVv30MMbzNMabcPc_R55I4xKTmn-Q38G0XOWrs</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kang, Sangmin</creator><creator>Ja-Jung Koo</creator><creator>Seo, Hongmin</creator><creator>Truong, Quang Trung</creator><creator>Park, Jong Bo</creator><creator>Seong Chae Park</creator><creator>Jung, Youngjin</creator><creator>Sung-Pyo Cho</creator><creator>Nam, Ki Tae</creator><creator>Kim, Zee Hwan</creator><creator>Hong, Byung Hee</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution</title><author>Kang, Sangmin ; Ja-Jung Koo ; Seo, Hongmin ; Truong, Quang Trung ; Park, Jong Bo ; Seong Chae Park ; Jung, Youngjin ; Sung-Pyo Cho ; Nam, Ki Tae ; Kim, Zee Hwan ; Hong, Byung Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-75bc91935ada9ff54f6f4f6a178e049ee70220b2ed7cd9e21edb2970770d34923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Argon</topic><topic>Catalysis</topic><topic>Defects</topic><topic>Hydrogen evolution reactions</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Photoluminescence</topic><topic>Stability</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Sangmin</creatorcontrib><creatorcontrib>Ja-Jung Koo</creatorcontrib><creatorcontrib>Seo, Hongmin</creatorcontrib><creatorcontrib>Truong, Quang Trung</creatorcontrib><creatorcontrib>Park, Jong Bo</creatorcontrib><creatorcontrib>Seong Chae Park</creatorcontrib><creatorcontrib>Jung, Youngjin</creatorcontrib><creatorcontrib>Sung-Pyo Cho</creatorcontrib><creatorcontrib>Nam, Ki Tae</creatorcontrib><creatorcontrib>Kim, Zee Hwan</creatorcontrib><creatorcontrib>Hong, Byung Hee</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Sangmin</au><au>Ja-Jung Koo</au><au>Seo, Hongmin</au><au>Truong, Quang Trung</au><au>Park, Jong Bo</au><au>Seong Chae Park</au><au>Jung, Youngjin</au><au>Sung-Pyo Cho</au><au>Nam, Ki Tae</au><au>Kim, Zee Hwan</au><au>Hong, Byung Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>33</issue><spage>10173</spage><epage>10178</epage><pages>10173-10178</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>It has been reported that defects in molybdenum disulfide (MoS2) enable the hydrogen evolution reaction (HER). The most widely employed method of argon-plasma treatment for defect generation suffers from poor material stability and loss of conductivity. Here, we report a new method to synthesize highly polycrystalline molybdenum disulfide MoS2 bilayers with enhanced HER performance and material stability. This new method is based on metal organic chemical vapor deposition (MOCVD) followed by UV/ozone treatment to generate defects. The defect densities on MoS2 were identified by the increase in lifetime (∼76%) and intensity (∼15%) in photoluminescence (PL) as compared to those of pristine MoS2. Our fabrication and characterization methods can be further applied to optimize defect densities for catalytic effects in various transition metal dichalcogenide (TMDC) materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9tc02256b</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, Vol.7 (33), p.10173-10178
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2277331526
source Royal Society Of Chemistry Journals 2008-
subjects Argon
Catalysis
Defects
Hydrogen evolution reactions
Metalorganic chemical vapor deposition
Molybdenum
Molybdenum disulfide
Organic chemicals
Organic chemistry
Photoluminescence
Stability
Transition metal compounds
title Defect-engineered MoS2 with extended photoluminescence lifetime for high-performance hydrogen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-engineered%20MoS2%20with%20extended%20photoluminescence%20lifetime%20for%20high-performance%20hydrogen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Kang,%20Sangmin&rft.date=2019&rft.volume=7&rft.issue=33&rft.spage=10173&rft.epage=10178&rft.pages=10173-10178&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c9tc02256b&rft_dat=%3Cproquest%3E2277331526%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277331526&rft_id=info:pmid/&rfr_iscdi=true