CDLFM: cross-domain recommendation for cold-start users via latent feature mapping

Collaborative filtering (CF) is a widely adopted technique in recommender systems. Traditional CF models mainly focus on predicting the user preference to items in a single domain, such as the movie domain or the music domain. A major challenge for such models is the data sparsity, and especially, C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2020-05, Vol.62 (5), p.1723-1750
Hauptverfasser: Wang, Xinghua, Peng, Zhaohui, Wang, Senzhang, Yu, Philip S., Fu, Wenjing, Xu, Xiaokang, Hong, Xiaoguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1750
container_issue 5
container_start_page 1723
container_title Knowledge and information systems
container_volume 62
creator Wang, Xinghua
Peng, Zhaohui
Wang, Senzhang
Yu, Philip S.
Fu, Wenjing
Xu, Xiaokang
Hong, Xiaoguang
description Collaborative filtering (CF) is a widely adopted technique in recommender systems. Traditional CF models mainly focus on predicting the user preference to items in a single domain, such as the movie domain or the music domain. A major challenge for such models is the data sparsity, and especially, CF cannot make accurate predictions for the cold-start users who have no ratings at all. Although cross-domain collaborative filtering (CDCF) is proposed for effectively transferring knowledge across different domains, it is still difficult for existing CDCF models to tackle the cold-start users in the target domain due to the extreme data sparsity. In this paper, we propose the cross-domain latent feature mapping (CDLFM) model for the cold-start users in the target domain. Firstly, in order to alleviate the data sparsity in single domain and provide essential knowledge for next step, we take users’ rating behaviors into consideration and propose the matrix factorization by incorporating user similarities. Next, to transfer knowledge across domains, we propose the neighborhood-based cross-domain latent feature mapping method. For each cold-start user, we learn his/her feature mapping function based on his/her neighbor linked users. By adopting gradient boosting trees and multilayer perceptron to model the cross-domain feature mapping function, two CDLFM models named CDLFM-GBT and CDLFM-MLP are proposed. Experimental results on two real datasets demonstrate the superiority of our proposed model against other state-of-the-art methods.
doi_str_mv 10.1007/s10115-019-01396-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277174455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277174455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c413893f067a0756165aa99a51bdcebb3d56c79008d10f351f3a91c967f497573</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPAczSz2SSNN6lWhYogeg5pNilbups1yQr--267BW8ehpmB994wH0LXQG-BUnmXgAJwQkENxZQg_ARNaDGsDECcHmdgUp6ji5Q2lIIUABP0MX9cLt7usY0hJVKFxtQtjs6GpnFtZXIdWuxDxDZsK5KyiRn3ycWEf2qDtya7NmPvTO6jw43purpdX6Izb7bJXR37FH0tnj7nL2T5_vw6f1gSy0BlYktgM8U8FdJQyQUIboxShsOqsm61YhUXVipKZxVQzzh4ZhRYJaQvleSSTdHNmNvF8N27lPUm9LEdTuqikBJkWXI-qIpRdfgwOq-7WDcm_mqges9Oj-z0wE4f2Om9iY2mNIjbtYt_0f-4diYDcKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277174455</pqid></control><display><type>article</type><title>CDLFM: cross-domain recommendation for cold-start users via latent feature mapping</title><source>SpringerLink (Online service)</source><creator>Wang, Xinghua ; Peng, Zhaohui ; Wang, Senzhang ; Yu, Philip S. ; Fu, Wenjing ; Xu, Xiaokang ; Hong, Xiaoguang</creator><creatorcontrib>Wang, Xinghua ; Peng, Zhaohui ; Wang, Senzhang ; Yu, Philip S. ; Fu, Wenjing ; Xu, Xiaokang ; Hong, Xiaoguang</creatorcontrib><description>Collaborative filtering (CF) is a widely adopted technique in recommender systems. Traditional CF models mainly focus on predicting the user preference to items in a single domain, such as the movie domain or the music domain. A major challenge for such models is the data sparsity, and especially, CF cannot make accurate predictions for the cold-start users who have no ratings at all. Although cross-domain collaborative filtering (CDCF) is proposed for effectively transferring knowledge across different domains, it is still difficult for existing CDCF models to tackle the cold-start users in the target domain due to the extreme data sparsity. In this paper, we propose the cross-domain latent feature mapping (CDLFM) model for the cold-start users in the target domain. Firstly, in order to alleviate the data sparsity in single domain and provide essential knowledge for next step, we take users’ rating behaviors into consideration and propose the matrix factorization by incorporating user similarities. Next, to transfer knowledge across domains, we propose the neighborhood-based cross-domain latent feature mapping method. For each cold-start user, we learn his/her feature mapping function based on his/her neighbor linked users. By adopting gradient boosting trees and multilayer perceptron to model the cross-domain feature mapping function, two CDLFM models named CDLFM-GBT and CDLFM-MLP are proposed. Experimental results on two real datasets demonstrate the superiority of our proposed model against other state-of-the-art methods.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-019-01396-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Cold ; Cold starts ; Collaboration ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Domains ; Filtration ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Knowledge management ; Mapping ; Multilayer perceptrons ; Predictions ; Recommender systems ; Regular Paper ; Sparsity</subject><ispartof>Knowledge and information systems, 2020-05, Vol.62 (5), p.1723-1750</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c413893f067a0756165aa99a51bdcebb3d56c79008d10f351f3a91c967f497573</citedby><cites>FETCH-LOGICAL-c319t-c413893f067a0756165aa99a51bdcebb3d56c79008d10f351f3a91c967f497573</cites><orcidid>0000-0002-1296-2114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-019-01396-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-019-01396-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Xinghua</creatorcontrib><creatorcontrib>Peng, Zhaohui</creatorcontrib><creatorcontrib>Wang, Senzhang</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Fu, Wenjing</creatorcontrib><creatorcontrib>Xu, Xiaokang</creatorcontrib><creatorcontrib>Hong, Xiaoguang</creatorcontrib><title>CDLFM: cross-domain recommendation for cold-start users via latent feature mapping</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Collaborative filtering (CF) is a widely adopted technique in recommender systems. Traditional CF models mainly focus on predicting the user preference to items in a single domain, such as the movie domain or the music domain. A major challenge for such models is the data sparsity, and especially, CF cannot make accurate predictions for the cold-start users who have no ratings at all. Although cross-domain collaborative filtering (CDCF) is proposed for effectively transferring knowledge across different domains, it is still difficult for existing CDCF models to tackle the cold-start users in the target domain due to the extreme data sparsity. In this paper, we propose the cross-domain latent feature mapping (CDLFM) model for the cold-start users in the target domain. Firstly, in order to alleviate the data sparsity in single domain and provide essential knowledge for next step, we take users’ rating behaviors into consideration and propose the matrix factorization by incorporating user similarities. Next, to transfer knowledge across domains, we propose the neighborhood-based cross-domain latent feature mapping method. For each cold-start user, we learn his/her feature mapping function based on his/her neighbor linked users. By adopting gradient boosting trees and multilayer perceptron to model the cross-domain feature mapping function, two CDLFM models named CDLFM-GBT and CDLFM-MLP are proposed. Experimental results on two real datasets demonstrate the superiority of our proposed model against other state-of-the-art methods.</description><subject>Cold</subject><subject>Cold starts</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Domains</subject><subject>Filtration</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Knowledge management</subject><subject>Mapping</subject><subject>Multilayer perceptrons</subject><subject>Predictions</subject><subject>Recommender systems</subject><subject>Regular Paper</subject><subject>Sparsity</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPAczSz2SSNN6lWhYogeg5pNilbups1yQr--267BW8ehpmB994wH0LXQG-BUnmXgAJwQkENxZQg_ARNaDGsDECcHmdgUp6ji5Q2lIIUABP0MX9cLt7usY0hJVKFxtQtjs6GpnFtZXIdWuxDxDZsK5KyiRn3ycWEf2qDtya7NmPvTO6jw43purpdX6Izb7bJXR37FH0tnj7nL2T5_vw6f1gSy0BlYktgM8U8FdJQyQUIboxShsOqsm61YhUXVipKZxVQzzh4ZhRYJaQvleSSTdHNmNvF8N27lPUm9LEdTuqikBJkWXI-qIpRdfgwOq-7WDcm_mqges9Oj-z0wE4f2Om9iY2mNIjbtYt_0f-4diYDcKQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Xinghua</creator><creator>Peng, Zhaohui</creator><creator>Wang, Senzhang</creator><creator>Yu, Philip S.</creator><creator>Fu, Wenjing</creator><creator>Xu, Xiaokang</creator><creator>Hong, Xiaoguang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1296-2114</orcidid></search><sort><creationdate>20200501</creationdate><title>CDLFM: cross-domain recommendation for cold-start users via latent feature mapping</title><author>Wang, Xinghua ; Peng, Zhaohui ; Wang, Senzhang ; Yu, Philip S. ; Fu, Wenjing ; Xu, Xiaokang ; Hong, Xiaoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c413893f067a0756165aa99a51bdcebb3d56c79008d10f351f3a91c967f497573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cold</topic><topic>Cold starts</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Domains</topic><topic>Filtration</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Knowledge management</topic><topic>Mapping</topic><topic>Multilayer perceptrons</topic><topic>Predictions</topic><topic>Recommender systems</topic><topic>Regular Paper</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinghua</creatorcontrib><creatorcontrib>Peng, Zhaohui</creatorcontrib><creatorcontrib>Wang, Senzhang</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Fu, Wenjing</creatorcontrib><creatorcontrib>Xu, Xiaokang</creatorcontrib><creatorcontrib>Hong, Xiaoguang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinghua</au><au>Peng, Zhaohui</au><au>Wang, Senzhang</au><au>Yu, Philip S.</au><au>Fu, Wenjing</au><au>Xu, Xiaokang</au><au>Hong, Xiaoguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CDLFM: cross-domain recommendation for cold-start users via latent feature mapping</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>62</volume><issue>5</issue><spage>1723</spage><epage>1750</epage><pages>1723-1750</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Collaborative filtering (CF) is a widely adopted technique in recommender systems. Traditional CF models mainly focus on predicting the user preference to items in a single domain, such as the movie domain or the music domain. A major challenge for such models is the data sparsity, and especially, CF cannot make accurate predictions for the cold-start users who have no ratings at all. Although cross-domain collaborative filtering (CDCF) is proposed for effectively transferring knowledge across different domains, it is still difficult for existing CDCF models to tackle the cold-start users in the target domain due to the extreme data sparsity. In this paper, we propose the cross-domain latent feature mapping (CDLFM) model for the cold-start users in the target domain. Firstly, in order to alleviate the data sparsity in single domain and provide essential knowledge for next step, we take users’ rating behaviors into consideration and propose the matrix factorization by incorporating user similarities. Next, to transfer knowledge across domains, we propose the neighborhood-based cross-domain latent feature mapping method. For each cold-start user, we learn his/her feature mapping function based on his/her neighbor linked users. By adopting gradient boosting trees and multilayer perceptron to model the cross-domain feature mapping function, two CDLFM models named CDLFM-GBT and CDLFM-MLP are proposed. Experimental results on two real datasets demonstrate the superiority of our proposed model against other state-of-the-art methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-019-01396-5</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-1296-2114</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0219-1377
ispartof Knowledge and information systems, 2020-05, Vol.62 (5), p.1723-1750
issn 0219-1377
0219-3116
language eng
recordid cdi_proquest_journals_2277174455
source SpringerLink (Online service)
subjects Cold
Cold starts
Collaboration
Computer Science
Data Mining and Knowledge Discovery
Database Management
Domains
Filtration
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Knowledge management
Mapping
Multilayer perceptrons
Predictions
Recommender systems
Regular Paper
Sparsity
title CDLFM: cross-domain recommendation for cold-start users via latent feature mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CDLFM:%20cross-domain%20recommendation%20for%20cold-start%20users%20via%20latent%20feature%20mapping&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Wang,%20Xinghua&rft.date=2020-05-01&rft.volume=62&rft.issue=5&rft.spage=1723&rft.epage=1750&rft.pages=1723-1750&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-019-01396-5&rft_dat=%3Cproquest_cross%3E2277174455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277174455&rft_id=info:pmid/&rfr_iscdi=true