Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications

Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2019-09, Vol.181, p.107696, Article 107696
Hauptverfasser: Ma, Lingwei, Wang, Jinke, Zhao, Fengtong, Wu, Dequan, Huang, Yao, Zhang, Dawei, Zhang, Zhengjun, Fu, Wangyang, Li, Xiaogang, Fan, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107696
container_title Composites science and technology
container_volume 181
creator Ma, Lingwei
Wang, Jinke
Zhao, Fengtong
Wu, Dequan
Huang, Yao
Zhang, Dawei
Zhang, Zhengjun
Fu, Wangyang
Li, Xiaogang
Fan, Yi
description Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is achieved by depositing TiN nanorods (NRs) of different length to optimize the localized surface plasmon resonance (LSPR) performance. Plasmonics TiN NRs can efficiently adsorb light and convert the optical energy into heat. We also maximize the film superhydrophobicity by depositing low surface energy PTFE NRs with high porosity. Through the integration of photothermal conversion and superhydrophobicity, the as-fabricated TiN-PTFE film possesses both active anti-icing property and passive deicing functionality, i.e., the freezing time of water on the TiN-PTFE coated substrate delays by ∼400% times compared with that on untreated steel surface, and the ice layer formed on the TiN-PTFE film melts completely within several seconds under laser irradiation. In addition, the hybrid film exhibits excellent stability in various extreme conditions, such as high-temperature stability up to 200 °C, chemical stability in a large range of pH solutions, corrosion resistance against NaCl solution, as well as mechanical durability upon scratching. This robust nanocomposite film with multiple outstanding properties shows great application prospects in industrial fields, and will inspire the development of plasmonic materials and superhydrophobic surfaces. [Display omitted]
doi_str_mv 10.1016/j.compscitech.2019.107696
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2276828473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026635381931070X</els_id><sourcerecordid>2276828473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a7aef8db651f99097241c741cba304f79240b63c5aa1b64b596214ff863df5f3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD0Gs3dpOYsdLVPGSKuiie8vxg7hK4mC7SP17DGHBksXoSjP3zmgOALcYrTDCdH1YKT9MUblkVLciCPPcZ5TTM7DADeMQoxqdgwUilMKyLptLcBXjASHEak4WQO96GQc_wsFoJ5PRxdT55FNnwiD7Qo66iMfJhO6kg8-j1qli717hbv_4UFjXD4X1IduSg0658X2tzY8Wcpp6p2RyfozX4MLKPpqbX12CnN5vnuH27ellc7-FqmxogpJJYxvd0hpbzhFnpMKK5WpliSrLOKlQS0tVS4lbWrU1pwRX1ja01La25RLczWun4D-OJiZx8Mcw5ouCEEYb0lSszC4-u1TwMQZjxRTcIMNJYCS-mYqD-MNUfDMVM9Oc3cxZk7_4dCaI7DKjyuyCUUlo7_6x5QtbM4c0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276828473</pqid></control><display><type>article</type><title>Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications</title><source>Elsevier ScienceDirect Journals</source><creator>Ma, Lingwei ; Wang, Jinke ; Zhao, Fengtong ; Wu, Dequan ; Huang, Yao ; Zhang, Dawei ; Zhang, Zhengjun ; Fu, Wangyang ; Li, Xiaogang ; Fan, Yi</creator><creatorcontrib>Ma, Lingwei ; Wang, Jinke ; Zhao, Fengtong ; Wu, Dequan ; Huang, Yao ; Zhang, Dawei ; Zhang, Zhengjun ; Fu, Wangyang ; Li, Xiaogang ; Fan, Yi</creatorcontrib><description>Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is achieved by depositing TiN nanorods (NRs) of different length to optimize the localized surface plasmon resonance (LSPR) performance. Plasmonics TiN NRs can efficiently adsorb light and convert the optical energy into heat. We also maximize the film superhydrophobicity by depositing low surface energy PTFE NRs with high porosity. Through the integration of photothermal conversion and superhydrophobicity, the as-fabricated TiN-PTFE film possesses both active anti-icing property and passive deicing functionality, i.e., the freezing time of water on the TiN-PTFE coated substrate delays by ∼400% times compared with that on untreated steel surface, and the ice layer formed on the TiN-PTFE film melts completely within several seconds under laser irradiation. In addition, the hybrid film exhibits excellent stability in various extreme conditions, such as high-temperature stability up to 200 °C, chemical stability in a large range of pH solutions, corrosion resistance against NaCl solution, as well as mechanical durability upon scratching. This robust nanocomposite film with multiple outstanding properties shows great application prospects in industrial fields, and will inspire the development of plasmonic materials and superhydrophobic surfaces. [Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2019.107696</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Annealing ; Corrosion resistance ; Deicing ; Deposition ; Durability ; Freeze time ; Freezing ; High temperature ; Hybrid composites ; Hydrophobic surfaces ; Hydrophobicity ; Ice formation ; Mechanical properties ; Nanocomposites ; Nanorods ; Nanostructured materials ; Organic chemistry ; Photothermal conversion ; Physical vapour deposition ; Plasmonics ; Polymers ; Polytetrafluoroethylene ; Porosity ; Robustness (mathematics) ; Scratching ; Stability ; Substrates ; Surface energy ; Thin films ; Titanium nitride</subject><ispartof>Composites science and technology, 2019-09, Vol.181, p.107696, Article 107696</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 8, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a7aef8db651f99097241c741cba304f79240b63c5aa1b64b596214ff863df5f3</citedby><cites>FETCH-LOGICAL-c386t-a7aef8db651f99097241c741cba304f79240b63c5aa1b64b596214ff863df5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S026635381931070X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ma, Lingwei</creatorcontrib><creatorcontrib>Wang, Jinke</creatorcontrib><creatorcontrib>Zhao, Fengtong</creatorcontrib><creatorcontrib>Wu, Dequan</creatorcontrib><creatorcontrib>Huang, Yao</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><creatorcontrib>Zhang, Zhengjun</creatorcontrib><creatorcontrib>Fu, Wangyang</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><title>Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications</title><title>Composites science and technology</title><description>Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is achieved by depositing TiN nanorods (NRs) of different length to optimize the localized surface plasmon resonance (LSPR) performance. Plasmonics TiN NRs can efficiently adsorb light and convert the optical energy into heat. We also maximize the film superhydrophobicity by depositing low surface energy PTFE NRs with high porosity. Through the integration of photothermal conversion and superhydrophobicity, the as-fabricated TiN-PTFE film possesses both active anti-icing property and passive deicing functionality, i.e., the freezing time of water on the TiN-PTFE coated substrate delays by ∼400% times compared with that on untreated steel surface, and the ice layer formed on the TiN-PTFE film melts completely within several seconds under laser irradiation. In addition, the hybrid film exhibits excellent stability in various extreme conditions, such as high-temperature stability up to 200 °C, chemical stability in a large range of pH solutions, corrosion resistance against NaCl solution, as well as mechanical durability upon scratching. This robust nanocomposite film with multiple outstanding properties shows great application prospects in industrial fields, and will inspire the development of plasmonic materials and superhydrophobic surfaces. [Display omitted]</description><subject>Annealing</subject><subject>Corrosion resistance</subject><subject>Deicing</subject><subject>Deposition</subject><subject>Durability</subject><subject>Freeze time</subject><subject>Freezing</subject><subject>High temperature</subject><subject>Hybrid composites</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Ice formation</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanorods</subject><subject>Nanostructured materials</subject><subject>Organic chemistry</subject><subject>Photothermal conversion</subject><subject>Physical vapour deposition</subject><subject>Plasmonics</subject><subject>Polymers</subject><subject>Polytetrafluoroethylene</subject><subject>Porosity</subject><subject>Robustness (mathematics)</subject><subject>Scratching</subject><subject>Stability</subject><subject>Substrates</subject><subject>Surface energy</subject><subject>Thin films</subject><subject>Titanium nitride</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD0Gs3dpOYsdLVPGSKuiie8vxg7hK4mC7SP17DGHBksXoSjP3zmgOALcYrTDCdH1YKT9MUblkVLciCPPcZ5TTM7DADeMQoxqdgwUilMKyLptLcBXjASHEak4WQO96GQc_wsFoJ5PRxdT55FNnwiD7Qo66iMfJhO6kg8-j1qli717hbv_4UFjXD4X1IduSg0658X2tzY8Wcpp6p2RyfozX4MLKPpqbX12CnN5vnuH27ellc7-FqmxogpJJYxvd0hpbzhFnpMKK5WpliSrLOKlQS0tVS4lbWrU1pwRX1ja01La25RLczWun4D-OJiZx8Mcw5ouCEEYb0lSszC4-u1TwMQZjxRTcIMNJYCS-mYqD-MNUfDMVM9Oc3cxZk7_4dCaI7DKjyuyCUUlo7_6x5QtbM4c0</recordid><startdate>20190908</startdate><enddate>20190908</enddate><creator>Ma, Lingwei</creator><creator>Wang, Jinke</creator><creator>Zhao, Fengtong</creator><creator>Wu, Dequan</creator><creator>Huang, Yao</creator><creator>Zhang, Dawei</creator><creator>Zhang, Zhengjun</creator><creator>Fu, Wangyang</creator><creator>Li, Xiaogang</creator><creator>Fan, Yi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190908</creationdate><title>Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications</title><author>Ma, Lingwei ; Wang, Jinke ; Zhao, Fengtong ; Wu, Dequan ; Huang, Yao ; Zhang, Dawei ; Zhang, Zhengjun ; Fu, Wangyang ; Li, Xiaogang ; Fan, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a7aef8db651f99097241c741cba304f79240b63c5aa1b64b596214ff863df5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Corrosion resistance</topic><topic>Deicing</topic><topic>Deposition</topic><topic>Durability</topic><topic>Freeze time</topic><topic>Freezing</topic><topic>High temperature</topic><topic>Hybrid composites</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Ice formation</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanorods</topic><topic>Nanostructured materials</topic><topic>Organic chemistry</topic><topic>Photothermal conversion</topic><topic>Physical vapour deposition</topic><topic>Plasmonics</topic><topic>Polymers</topic><topic>Polytetrafluoroethylene</topic><topic>Porosity</topic><topic>Robustness (mathematics)</topic><topic>Scratching</topic><topic>Stability</topic><topic>Substrates</topic><topic>Surface energy</topic><topic>Thin films</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Lingwei</creatorcontrib><creatorcontrib>Wang, Jinke</creatorcontrib><creatorcontrib>Zhao, Fengtong</creatorcontrib><creatorcontrib>Wu, Dequan</creatorcontrib><creatorcontrib>Huang, Yao</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><creatorcontrib>Zhang, Zhengjun</creatorcontrib><creatorcontrib>Fu, Wangyang</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Lingwei</au><au>Wang, Jinke</au><au>Zhao, Fengtong</au><au>Wu, Dequan</au><au>Huang, Yao</au><au>Zhang, Dawei</au><au>Zhang, Zhengjun</au><au>Fu, Wangyang</au><au>Li, Xiaogang</au><au>Fan, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications</atitle><jtitle>Composites science and technology</jtitle><date>2019-09-08</date><risdate>2019</risdate><volume>181</volume><spage>107696</spage><pages>107696-</pages><artnum>107696</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is achieved by depositing TiN nanorods (NRs) of different length to optimize the localized surface plasmon resonance (LSPR) performance. Plasmonics TiN NRs can efficiently adsorb light and convert the optical energy into heat. We also maximize the film superhydrophobicity by depositing low surface energy PTFE NRs with high porosity. Through the integration of photothermal conversion and superhydrophobicity, the as-fabricated TiN-PTFE film possesses both active anti-icing property and passive deicing functionality, i.e., the freezing time of water on the TiN-PTFE coated substrate delays by ∼400% times compared with that on untreated steel surface, and the ice layer formed on the TiN-PTFE film melts completely within several seconds under laser irradiation. In addition, the hybrid film exhibits excellent stability in various extreme conditions, such as high-temperature stability up to 200 °C, chemical stability in a large range of pH solutions, corrosion resistance against NaCl solution, as well as mechanical durability upon scratching. This robust nanocomposite film with multiple outstanding properties shows great application prospects in industrial fields, and will inspire the development of plasmonic materials and superhydrophobic surfaces. [Display omitted]</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2019.107696</doi></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2019-09, Vol.181, p.107696, Article 107696
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_2276828473
source Elsevier ScienceDirect Journals
subjects Annealing
Corrosion resistance
Deicing
Deposition
Durability
Freeze time
Freezing
High temperature
Hybrid composites
Hydrophobic surfaces
Hydrophobicity
Ice formation
Mechanical properties
Nanocomposites
Nanorods
Nanostructured materials
Organic chemistry
Photothermal conversion
Physical vapour deposition
Plasmonics
Polymers
Polytetrafluoroethylene
Porosity
Robustness (mathematics)
Scratching
Stability
Substrates
Surface energy
Thin films
Titanium nitride
title Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon-mediated%20photothermal%20and%20superhydrophobic%20TiN-PTFE%20film%20for%20anti-icing/deicing%20applications&rft.jtitle=Composites%20science%20and%20technology&rft.au=Ma,%20Lingwei&rft.date=2019-09-08&rft.volume=181&rft.spage=107696&rft.pages=107696-&rft.artnum=107696&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2019.107696&rft_dat=%3Cproquest_cross%3E2276828473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2276828473&rft_id=info:pmid/&rft_els_id=S026635381931070X&rfr_iscdi=true