Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications
Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is ac...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2019-09, Vol.181, p.107696, Article 107696 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107696 |
container_title | Composites science and technology |
container_volume | 181 |
creator | Ma, Lingwei Wang, Jinke Zhao, Fengtong Wu, Dequan Huang, Yao Zhang, Dawei Zhang, Zhengjun Fu, Wangyang Li, Xiaogang Fan, Yi |
description | Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is achieved by depositing TiN nanorods (NRs) of different length to optimize the localized surface plasmon resonance (LSPR) performance. Plasmonics TiN NRs can efficiently adsorb light and convert the optical energy into heat. We also maximize the film superhydrophobicity by depositing low surface energy PTFE NRs with high porosity. Through the integration of photothermal conversion and superhydrophobicity, the as-fabricated TiN-PTFE film possesses both active anti-icing property and passive deicing functionality, i.e., the freezing time of water on the TiN-PTFE coated substrate delays by ∼400% times compared with that on untreated steel surface, and the ice layer formed on the TiN-PTFE film melts completely within several seconds under laser irradiation. In addition, the hybrid film exhibits excellent stability in various extreme conditions, such as high-temperature stability up to 200 °C, chemical stability in a large range of pH solutions, corrosion resistance against NaCl solution, as well as mechanical durability upon scratching. This robust nanocomposite film with multiple outstanding properties shows great application prospects in industrial fields, and will inspire the development of plasmonic materials and superhydrophobic surfaces.
[Display omitted] |
doi_str_mv | 10.1016/j.compscitech.2019.107696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2276828473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026635381931070X</els_id><sourcerecordid>2276828473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a7aef8db651f99097241c741cba304f79240b63c5aa1b64b596214ff863df5f3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD0Gs3dpOYsdLVPGSKuiie8vxg7hK4mC7SP17DGHBksXoSjP3zmgOALcYrTDCdH1YKT9MUblkVLciCPPcZ5TTM7DADeMQoxqdgwUilMKyLptLcBXjASHEak4WQO96GQc_wsFoJ5PRxdT55FNnwiD7Qo66iMfJhO6kg8-j1qli717hbv_4UFjXD4X1IduSg0658X2tzY8Wcpp6p2RyfozX4MLKPpqbX12CnN5vnuH27ellc7-FqmxogpJJYxvd0hpbzhFnpMKK5WpliSrLOKlQS0tVS4lbWrU1pwRX1ja01La25RLczWun4D-OJiZx8Mcw5ouCEEYb0lSszC4-u1TwMQZjxRTcIMNJYCS-mYqD-MNUfDMVM9Oc3cxZk7_4dCaI7DKjyuyCUUlo7_6x5QtbM4c0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276828473</pqid></control><display><type>article</type><title>Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications</title><source>Elsevier ScienceDirect Journals</source><creator>Ma, Lingwei ; Wang, Jinke ; Zhao, Fengtong ; Wu, Dequan ; Huang, Yao ; Zhang, Dawei ; Zhang, Zhengjun ; Fu, Wangyang ; Li, Xiaogang ; Fan, Yi</creator><creatorcontrib>Ma, Lingwei ; Wang, Jinke ; Zhao, Fengtong ; Wu, Dequan ; Huang, Yao ; Zhang, Dawei ; Zhang, Zhengjun ; Fu, Wangyang ; Li, Xiaogang ; Fan, Yi</creatorcontrib><description>Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is achieved by depositing TiN nanorods (NRs) of different length to optimize the localized surface plasmon resonance (LSPR) performance. Plasmonics TiN NRs can efficiently adsorb light and convert the optical energy into heat. We also maximize the film superhydrophobicity by depositing low surface energy PTFE NRs with high porosity. Through the integration of photothermal conversion and superhydrophobicity, the as-fabricated TiN-PTFE film possesses both active anti-icing property and passive deicing functionality, i.e., the freezing time of water on the TiN-PTFE coated substrate delays by ∼400% times compared with that on untreated steel surface, and the ice layer formed on the TiN-PTFE film melts completely within several seconds under laser irradiation. In addition, the hybrid film exhibits excellent stability in various extreme conditions, such as high-temperature stability up to 200 °C, chemical stability in a large range of pH solutions, corrosion resistance against NaCl solution, as well as mechanical durability upon scratching. This robust nanocomposite film with multiple outstanding properties shows great application prospects in industrial fields, and will inspire the development of plasmonic materials and superhydrophobic surfaces.
[Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2019.107696</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Annealing ; Corrosion resistance ; Deicing ; Deposition ; Durability ; Freeze time ; Freezing ; High temperature ; Hybrid composites ; Hydrophobic surfaces ; Hydrophobicity ; Ice formation ; Mechanical properties ; Nanocomposites ; Nanorods ; Nanostructured materials ; Organic chemistry ; Photothermal conversion ; Physical vapour deposition ; Plasmonics ; Polymers ; Polytetrafluoroethylene ; Porosity ; Robustness (mathematics) ; Scratching ; Stability ; Substrates ; Surface energy ; Thin films ; Titanium nitride</subject><ispartof>Composites science and technology, 2019-09, Vol.181, p.107696, Article 107696</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 8, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a7aef8db651f99097241c741cba304f79240b63c5aa1b64b596214ff863df5f3</citedby><cites>FETCH-LOGICAL-c386t-a7aef8db651f99097241c741cba304f79240b63c5aa1b64b596214ff863df5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S026635381931070X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ma, Lingwei</creatorcontrib><creatorcontrib>Wang, Jinke</creatorcontrib><creatorcontrib>Zhao, Fengtong</creatorcontrib><creatorcontrib>Wu, Dequan</creatorcontrib><creatorcontrib>Huang, Yao</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><creatorcontrib>Zhang, Zhengjun</creatorcontrib><creatorcontrib>Fu, Wangyang</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><title>Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications</title><title>Composites science and technology</title><description>Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is achieved by depositing TiN nanorods (NRs) of different length to optimize the localized surface plasmon resonance (LSPR) performance. Plasmonics TiN NRs can efficiently adsorb light and convert the optical energy into heat. We also maximize the film superhydrophobicity by depositing low surface energy PTFE NRs with high porosity. Through the integration of photothermal conversion and superhydrophobicity, the as-fabricated TiN-PTFE film possesses both active anti-icing property and passive deicing functionality, i.e., the freezing time of water on the TiN-PTFE coated substrate delays by ∼400% times compared with that on untreated steel surface, and the ice layer formed on the TiN-PTFE film melts completely within several seconds under laser irradiation. In addition, the hybrid film exhibits excellent stability in various extreme conditions, such as high-temperature stability up to 200 °C, chemical stability in a large range of pH solutions, corrosion resistance against NaCl solution, as well as mechanical durability upon scratching. This robust nanocomposite film with multiple outstanding properties shows great application prospects in industrial fields, and will inspire the development of plasmonic materials and superhydrophobic surfaces.
[Display omitted]</description><subject>Annealing</subject><subject>Corrosion resistance</subject><subject>Deicing</subject><subject>Deposition</subject><subject>Durability</subject><subject>Freeze time</subject><subject>Freezing</subject><subject>High temperature</subject><subject>Hybrid composites</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Ice formation</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanorods</subject><subject>Nanostructured materials</subject><subject>Organic chemistry</subject><subject>Photothermal conversion</subject><subject>Physical vapour deposition</subject><subject>Plasmonics</subject><subject>Polymers</subject><subject>Polytetrafluoroethylene</subject><subject>Porosity</subject><subject>Robustness (mathematics)</subject><subject>Scratching</subject><subject>Stability</subject><subject>Substrates</subject><subject>Surface energy</subject><subject>Thin films</subject><subject>Titanium nitride</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD0Gs3dpOYsdLVPGSKuiie8vxg7hK4mC7SP17DGHBksXoSjP3zmgOALcYrTDCdH1YKT9MUblkVLciCPPcZ5TTM7DADeMQoxqdgwUilMKyLptLcBXjASHEak4WQO96GQc_wsFoJ5PRxdT55FNnwiD7Qo66iMfJhO6kg8-j1qli717hbv_4UFjXD4X1IduSg0658X2tzY8Wcpp6p2RyfozX4MLKPpqbX12CnN5vnuH27ellc7-FqmxogpJJYxvd0hpbzhFnpMKK5WpliSrLOKlQS0tVS4lbWrU1pwRX1ja01La25RLczWun4D-OJiZx8Mcw5ouCEEYb0lSszC4-u1TwMQZjxRTcIMNJYCS-mYqD-MNUfDMVM9Oc3cxZk7_4dCaI7DKjyuyCUUlo7_6x5QtbM4c0</recordid><startdate>20190908</startdate><enddate>20190908</enddate><creator>Ma, Lingwei</creator><creator>Wang, Jinke</creator><creator>Zhao, Fengtong</creator><creator>Wu, Dequan</creator><creator>Huang, Yao</creator><creator>Zhang, Dawei</creator><creator>Zhang, Zhengjun</creator><creator>Fu, Wangyang</creator><creator>Li, Xiaogang</creator><creator>Fan, Yi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190908</creationdate><title>Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications</title><author>Ma, Lingwei ; Wang, Jinke ; Zhao, Fengtong ; Wu, Dequan ; Huang, Yao ; Zhang, Dawei ; Zhang, Zhengjun ; Fu, Wangyang ; Li, Xiaogang ; Fan, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a7aef8db651f99097241c741cba304f79240b63c5aa1b64b596214ff863df5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Corrosion resistance</topic><topic>Deicing</topic><topic>Deposition</topic><topic>Durability</topic><topic>Freeze time</topic><topic>Freezing</topic><topic>High temperature</topic><topic>Hybrid composites</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Ice formation</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanorods</topic><topic>Nanostructured materials</topic><topic>Organic chemistry</topic><topic>Photothermal conversion</topic><topic>Physical vapour deposition</topic><topic>Plasmonics</topic><topic>Polymers</topic><topic>Polytetrafluoroethylene</topic><topic>Porosity</topic><topic>Robustness (mathematics)</topic><topic>Scratching</topic><topic>Stability</topic><topic>Substrates</topic><topic>Surface energy</topic><topic>Thin films</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Lingwei</creatorcontrib><creatorcontrib>Wang, Jinke</creatorcontrib><creatorcontrib>Zhao, Fengtong</creatorcontrib><creatorcontrib>Wu, Dequan</creatorcontrib><creatorcontrib>Huang, Yao</creatorcontrib><creatorcontrib>Zhang, Dawei</creatorcontrib><creatorcontrib>Zhang, Zhengjun</creatorcontrib><creatorcontrib>Fu, Wangyang</creatorcontrib><creatorcontrib>Li, Xiaogang</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Lingwei</au><au>Wang, Jinke</au><au>Zhao, Fengtong</au><au>Wu, Dequan</au><au>Huang, Yao</au><au>Zhang, Dawei</au><au>Zhang, Zhengjun</au><au>Fu, Wangyang</au><au>Li, Xiaogang</au><au>Fan, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications</atitle><jtitle>Composites science and technology</jtitle><date>2019-09-08</date><risdate>2019</risdate><volume>181</volume><spage>107696</spage><pages>107696-</pages><artnum>107696</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Ice formation and accretion cause serious economic and safety issues. In this work we design and fabricate a photothermal and superhydrophobic film based on titanium nitride and polytetrafluoroethylene (TiN-PTFE) hybrid nanostructure for anti-icing/deicing applications. The photothermal effect is achieved by depositing TiN nanorods (NRs) of different length to optimize the localized surface plasmon resonance (LSPR) performance. Plasmonics TiN NRs can efficiently adsorb light and convert the optical energy into heat. We also maximize the film superhydrophobicity by depositing low surface energy PTFE NRs with high porosity. Through the integration of photothermal conversion and superhydrophobicity, the as-fabricated TiN-PTFE film possesses both active anti-icing property and passive deicing functionality, i.e., the freezing time of water on the TiN-PTFE coated substrate delays by ∼400% times compared with that on untreated steel surface, and the ice layer formed on the TiN-PTFE film melts completely within several seconds under laser irradiation. In addition, the hybrid film exhibits excellent stability in various extreme conditions, such as high-temperature stability up to 200 °C, chemical stability in a large range of pH solutions, corrosion resistance against NaCl solution, as well as mechanical durability upon scratching. This robust nanocomposite film with multiple outstanding properties shows great application prospects in industrial fields, and will inspire the development of plasmonic materials and superhydrophobic surfaces.
[Display omitted]</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2019.107696</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2019-09, Vol.181, p.107696, Article 107696 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2276828473 |
source | Elsevier ScienceDirect Journals |
subjects | Annealing Corrosion resistance Deicing Deposition Durability Freeze time Freezing High temperature Hybrid composites Hydrophobic surfaces Hydrophobicity Ice formation Mechanical properties Nanocomposites Nanorods Nanostructured materials Organic chemistry Photothermal conversion Physical vapour deposition Plasmonics Polymers Polytetrafluoroethylene Porosity Robustness (mathematics) Scratching Stability Substrates Surface energy Thin films Titanium nitride |
title | Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon-mediated%20photothermal%20and%20superhydrophobic%20TiN-PTFE%20film%20for%20anti-icing/deicing%20applications&rft.jtitle=Composites%20science%20and%20technology&rft.au=Ma,%20Lingwei&rft.date=2019-09-08&rft.volume=181&rft.spage=107696&rft.pages=107696-&rft.artnum=107696&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2019.107696&rft_dat=%3Cproquest_cross%3E2276828473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2276828473&rft_id=info:pmid/&rft_els_id=S026635381931070X&rfr_iscdi=true |