Synergistical Enhancement of Thermoelectric Properties in n‐Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure

Oxygen‐containing compounds are promising thermoelectric (TE) materials for their chemical and thermal stability. As compared with the high‐performance p‐type counterparts (e.g., ZT ≈1.5 for BiCuSeO), the enhancement of the TE performance of n‐type oxygen‐containing materials remains challenging due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-08, Vol.9 (31), p.n/a
Hauptverfasser: Tan, Xing, Liu, Yaochun, Liu, Rui, Zhou, Zhifang, Liu, Chan, Lan, Jin‐Le, Zhang, Qinghua, Lin, Yuan‐Hua, Nan, Ce‐Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced energy materials
container_volume 9
creator Tan, Xing
Liu, Yaochun
Liu, Rui
Zhou, Zhifang
Liu, Chan
Lan, Jin‐Le
Zhang, Qinghua
Lin, Yuan‐Hua
Nan, Ce‐Wen
description Oxygen‐containing compounds are promising thermoelectric (TE) materials for their chemical and thermal stability. As compared with the high‐performance p‐type counterparts (e.g., ZT ≈1.5 for BiCuSeO), the enhancement of the TE performance of n‐type oxygen‐containing materials remains challenging due to their mediocre electrical conductivity and high thermal conductivity. Here, n‐type layered Bi2O2Se is reported as a potential TE material, of which the thermal conductivity and electrical transport properties can be effectively tuned via carrier engineering and hierarchical microstructure. By selective modification of insulating [Bi2O2]2+ layers with Ta dopant, carrier concentration can be increased by four orders of magnitude (from 1015 to 1019 cm−3) while relatively high carrier mobility can be maintained, thus greatly enhancing the power factors (≈451.5 µW K−2 m−1). Meanwhile, the hierarchical microstructure can be induced by Ta doping, and the phonon scattering can be strengthened by atomic point defects, nanodots of 5–10 nm and grains of sub‐micrometer level, which progressively suppresses the lattice thermal conductivity. Accordingly, the ZT value of Bi1.90Ta0.10O2Se reaches 0.36 at 773 K, a ≈350% improvement in comparison with that of the pristine Bi2O2Se. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing TE materials. This work provides a desirable way for enhancing the ZT values in oxygen‐containing compounds. By selective modification of insulating [Bi2O2]2+ layers of n‐type Bi2O2Se with a Ta dopant, carrier concentration can be increased by four orders of magnitude. The phonon scattering can be strengthened in the hierarchical microstructure. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing thermoelectric materials.
doi_str_mv 10.1002/aenm.201900354
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2276728421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2276728421</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2334-5a1d319e14e3600f2aa3406ecac2add578c67b444e3832c2c70d22a5c5483a833</originalsourceid><addsrcrecordid>eNo9UE1PwkAQ3RhNJMjV8yaei_vVD45IUExATMDzZtkOsKTd1mkb05v-A3-jv8QihrnMvJmX9zKPkFvOhpwxcW_A50PB-IgxGaoL0uMRV0GUKHZ5nqW4JoOqOrCu1IgzKXvka9V6wJ2ramdNRqd-b7yFHHxNiy1d7wHzAjKwNTpLX7EoAWsHFXWe-p_P73VbAn1wYilWQDctnRhEB9jp7JwHQOd31PiUzrqlQbv_M1k4i0VVY2PrBuGGXG1NVsHgv_fJ2-N0PZkF8-XT82Q8D0ohpQpCw1PJR8AVyIixrTBGKhaBNVaYNA3jxEbxRqnu3D1qhY1ZKoQJbagSaRIp--TupFti8d5AVetD0aDvLLUQcRSLRAnesUYn1ofLoNUlutxgqznTx5j1MWZ9jlmPpy-LM5K__zB1gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276728421</pqid></control><display><type>article</type><title>Synergistical Enhancement of Thermoelectric Properties in n‐Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Tan, Xing ; Liu, Yaochun ; Liu, Rui ; Zhou, Zhifang ; Liu, Chan ; Lan, Jin‐Le ; Zhang, Qinghua ; Lin, Yuan‐Hua ; Nan, Ce‐Wen</creator><creatorcontrib>Tan, Xing ; Liu, Yaochun ; Liu, Rui ; Zhou, Zhifang ; Liu, Chan ; Lan, Jin‐Le ; Zhang, Qinghua ; Lin, Yuan‐Hua ; Nan, Ce‐Wen</creatorcontrib><description>Oxygen‐containing compounds are promising thermoelectric (TE) materials for their chemical and thermal stability. As compared with the high‐performance p‐type counterparts (e.g., ZT ≈1.5 for BiCuSeO), the enhancement of the TE performance of n‐type oxygen‐containing materials remains challenging due to their mediocre electrical conductivity and high thermal conductivity. Here, n‐type layered Bi2O2Se is reported as a potential TE material, of which the thermal conductivity and electrical transport properties can be effectively tuned via carrier engineering and hierarchical microstructure. By selective modification of insulating [Bi2O2]2+ layers with Ta dopant, carrier concentration can be increased by four orders of magnitude (from 1015 to 1019 cm−3) while relatively high carrier mobility can be maintained, thus greatly enhancing the power factors (≈451.5 µW K−2 m−1). Meanwhile, the hierarchical microstructure can be induced by Ta doping, and the phonon scattering can be strengthened by atomic point defects, nanodots of 5–10 nm and grains of sub‐micrometer level, which progressively suppresses the lattice thermal conductivity. Accordingly, the ZT value of Bi1.90Ta0.10O2Se reaches 0.36 at 773 K, a ≈350% improvement in comparison with that of the pristine Bi2O2Se. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing TE materials. This work provides a desirable way for enhancing the ZT values in oxygen‐containing compounds. By selective modification of insulating [Bi2O2]2+ layers of n‐type Bi2O2Se with a Ta dopant, carrier concentration can be increased by four orders of magnitude. The phonon scattering can be strengthened in the hierarchical microstructure. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing thermoelectric materials.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201900354</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bi2O2Se ; Carrier density ; carrier engineering ; Carrier mobility ; Electrical resistivity ; Heat conductivity ; Heat transfer ; hierarchical microstructures ; Microstructure ; Organic chemistry ; Oxygen ; Point defects ; Thermal conductivity ; Thermal stability ; Thermoelectric materials ; thermoelectrics ; Transport properties</subject><ispartof>Advanced energy materials, 2019-08, Vol.9 (31), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4498-2937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201900354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201900354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tan, Xing</creatorcontrib><creatorcontrib>Liu, Yaochun</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Zhou, Zhifang</creatorcontrib><creatorcontrib>Liu, Chan</creatorcontrib><creatorcontrib>Lan, Jin‐Le</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Lin, Yuan‐Hua</creatorcontrib><creatorcontrib>Nan, Ce‐Wen</creatorcontrib><title>Synergistical Enhancement of Thermoelectric Properties in n‐Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure</title><title>Advanced energy materials</title><description>Oxygen‐containing compounds are promising thermoelectric (TE) materials for their chemical and thermal stability. As compared with the high‐performance p‐type counterparts (e.g., ZT ≈1.5 for BiCuSeO), the enhancement of the TE performance of n‐type oxygen‐containing materials remains challenging due to their mediocre electrical conductivity and high thermal conductivity. Here, n‐type layered Bi2O2Se is reported as a potential TE material, of which the thermal conductivity and electrical transport properties can be effectively tuned via carrier engineering and hierarchical microstructure. By selective modification of insulating [Bi2O2]2+ layers with Ta dopant, carrier concentration can be increased by four orders of magnitude (from 1015 to 1019 cm−3) while relatively high carrier mobility can be maintained, thus greatly enhancing the power factors (≈451.5 µW K−2 m−1). Meanwhile, the hierarchical microstructure can be induced by Ta doping, and the phonon scattering can be strengthened by atomic point defects, nanodots of 5–10 nm and grains of sub‐micrometer level, which progressively suppresses the lattice thermal conductivity. Accordingly, the ZT value of Bi1.90Ta0.10O2Se reaches 0.36 at 773 K, a ≈350% improvement in comparison with that of the pristine Bi2O2Se. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing TE materials. This work provides a desirable way for enhancing the ZT values in oxygen‐containing compounds. By selective modification of insulating [Bi2O2]2+ layers of n‐type Bi2O2Se with a Ta dopant, carrier concentration can be increased by four orders of magnitude. The phonon scattering can be strengthened in the hierarchical microstructure. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing thermoelectric materials.</description><subject>Bi2O2Se</subject><subject>Carrier density</subject><subject>carrier engineering</subject><subject>Carrier mobility</subject><subject>Electrical resistivity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>hierarchical microstructures</subject><subject>Microstructure</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Point defects</subject><subject>Thermal conductivity</subject><subject>Thermal stability</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><subject>Transport properties</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PwkAQ3RhNJMjV8yaei_vVD45IUExATMDzZtkOsKTd1mkb05v-A3-jv8QihrnMvJmX9zKPkFvOhpwxcW_A50PB-IgxGaoL0uMRV0GUKHZ5nqW4JoOqOrCu1IgzKXvka9V6wJ2ramdNRqd-b7yFHHxNiy1d7wHzAjKwNTpLX7EoAWsHFXWe-p_P73VbAn1wYilWQDctnRhEB9jp7JwHQOd31PiUzrqlQbv_M1k4i0VVY2PrBuGGXG1NVsHgv_fJ2-N0PZkF8-XT82Q8D0ohpQpCw1PJR8AVyIixrTBGKhaBNVaYNA3jxEbxRqnu3D1qhY1ZKoQJbagSaRIp--TupFti8d5AVetD0aDvLLUQcRSLRAnesUYn1ofLoNUlutxgqznTx5j1MWZ9jlmPpy-LM5K__zB1gw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Tan, Xing</creator><creator>Liu, Yaochun</creator><creator>Liu, Rui</creator><creator>Zhou, Zhifang</creator><creator>Liu, Chan</creator><creator>Lan, Jin‐Le</creator><creator>Zhang, Qinghua</creator><creator>Lin, Yuan‐Hua</creator><creator>Nan, Ce‐Wen</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4498-2937</orcidid></search><sort><creationdate>20190801</creationdate><title>Synergistical Enhancement of Thermoelectric Properties in n‐Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure</title><author>Tan, Xing ; Liu, Yaochun ; Liu, Rui ; Zhou, Zhifang ; Liu, Chan ; Lan, Jin‐Le ; Zhang, Qinghua ; Lin, Yuan‐Hua ; Nan, Ce‐Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2334-5a1d319e14e3600f2aa3406ecac2add578c67b444e3832c2c70d22a5c5483a833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bi2O2Se</topic><topic>Carrier density</topic><topic>carrier engineering</topic><topic>Carrier mobility</topic><topic>Electrical resistivity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>hierarchical microstructures</topic><topic>Microstructure</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Point defects</topic><topic>Thermal conductivity</topic><topic>Thermal stability</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xing</creatorcontrib><creatorcontrib>Liu, Yaochun</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Zhou, Zhifang</creatorcontrib><creatorcontrib>Liu, Chan</creatorcontrib><creatorcontrib>Lan, Jin‐Le</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Lin, Yuan‐Hua</creatorcontrib><creatorcontrib>Nan, Ce‐Wen</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xing</au><au>Liu, Yaochun</au><au>Liu, Rui</au><au>Zhou, Zhifang</au><au>Liu, Chan</au><au>Lan, Jin‐Le</au><au>Zhang, Qinghua</au><au>Lin, Yuan‐Hua</au><au>Nan, Ce‐Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistical Enhancement of Thermoelectric Properties in n‐Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure</atitle><jtitle>Advanced energy materials</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>9</volume><issue>31</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Oxygen‐containing compounds are promising thermoelectric (TE) materials for their chemical and thermal stability. As compared with the high‐performance p‐type counterparts (e.g., ZT ≈1.5 for BiCuSeO), the enhancement of the TE performance of n‐type oxygen‐containing materials remains challenging due to their mediocre electrical conductivity and high thermal conductivity. Here, n‐type layered Bi2O2Se is reported as a potential TE material, of which the thermal conductivity and electrical transport properties can be effectively tuned via carrier engineering and hierarchical microstructure. By selective modification of insulating [Bi2O2]2+ layers with Ta dopant, carrier concentration can be increased by four orders of magnitude (from 1015 to 1019 cm−3) while relatively high carrier mobility can be maintained, thus greatly enhancing the power factors (≈451.5 µW K−2 m−1). Meanwhile, the hierarchical microstructure can be induced by Ta doping, and the phonon scattering can be strengthened by atomic point defects, nanodots of 5–10 nm and grains of sub‐micrometer level, which progressively suppresses the lattice thermal conductivity. Accordingly, the ZT value of Bi1.90Ta0.10O2Se reaches 0.36 at 773 K, a ≈350% improvement in comparison with that of the pristine Bi2O2Se. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing TE materials. This work provides a desirable way for enhancing the ZT values in oxygen‐containing compounds. By selective modification of insulating [Bi2O2]2+ layers of n‐type Bi2O2Se with a Ta dopant, carrier concentration can be increased by four orders of magnitude. The phonon scattering can be strengthened in the hierarchical microstructure. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing thermoelectric materials.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201900354</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4498-2937</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-08, Vol.9 (31), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2276728421
source Wiley Online Library - AutoHoldings Journals
subjects Bi2O2Se
Carrier density
carrier engineering
Carrier mobility
Electrical resistivity
Heat conductivity
Heat transfer
hierarchical microstructures
Microstructure
Organic chemistry
Oxygen
Point defects
Thermal conductivity
Thermal stability
Thermoelectric materials
thermoelectrics
Transport properties
title Synergistical Enhancement of Thermoelectric Properties in n‐Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistical%20Enhancement%20of%20Thermoelectric%20Properties%20in%20n%E2%80%90Type%20Bi2O2Se%20by%20Carrier%20Engineering%20and%20Hierarchical%20Microstructure&rft.jtitle=Advanced%20energy%20materials&rft.au=Tan,%20Xing&rft.date=2019-08-01&rft.volume=9&rft.issue=31&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201900354&rft_dat=%3Cproquest_wiley%3E2276728421%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2276728421&rft_id=info:pmid/&rfr_iscdi=true