Geometry of large Boltzmann outerplanar maps

We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Bolt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2019-10, Vol.55 (3), p.742-771
Hauptverfasser: Stefánsson, Sigurdur Örn, Stufler, Benedikt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 3
container_start_page 742
container_title Random structures & algorithms
container_volume 55
creator Stefánsson, Sigurdur Örn
Stufler, Benedikt
description We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.
doi_str_mv 10.1002/rsa.20834
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2276723969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2276723969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-1cd2de3cdde1b80b1dba8c4b51477ca6a64f5590a72a17d9d1e51c9b8ab6095c3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI4u_AcFV4KdyatNshyHcRQGBB_rcJukMkPb1KRF6q-3Y926umfxnXPhQ-ia4AXBmC5DhAXFkvETNCNYyZRyIk-PmdNUSUbP0UWMB4yxYJTN0N3W-dp1YUh8mVQQPlxy76vuu4amSXzfudBW0EBIamjjJToroYru6u_O0fvD5m39mO6et0_r1S41VAmeEmOpdcxY60ghcUFsAdLwIiNcCAM55LzMMoVBUCDCKktcRowqJBQ5Vplhc3Qz7bbBf_Yudvrg-9CMLzWlIheUqVyN1O1EmeBjDK7UbdjXEAZNsD7K0KMM_StjZJcT-7Wv3PA_qF9eV1PjB-EUYAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276723969</pqid></control><display><type>article</type><title>Geometry of large Boltzmann outerplanar maps</title><source>Access via Wiley Online Library</source><creator>Stefánsson, Sigurdur Örn ; Stufler, Benedikt</creator><creatorcontrib>Stefánsson, Sigurdur Örn ; Stufler, Benedikt</creatorcontrib><description>We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20834</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Apexes ; enriched trees ; looptrees ; outerplanar maps ; Phase diagrams ; random trees</subject><ispartof>Random structures &amp; algorithms, 2019-10, Vol.55 (3), p.742-771</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-1cd2de3cdde1b80b1dba8c4b51477ca6a64f5590a72a17d9d1e51c9b8ab6095c3</citedby><cites>FETCH-LOGICAL-c2974-1cd2de3cdde1b80b1dba8c4b51477ca6a64f5590a72a17d9d1e51c9b8ab6095c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20834$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20834$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Stefánsson, Sigurdur Örn</creatorcontrib><creatorcontrib>Stufler, Benedikt</creatorcontrib><title>Geometry of large Boltzmann outerplanar maps</title><title>Random structures &amp; algorithms</title><description>We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.</description><subject>Apexes</subject><subject>enriched trees</subject><subject>looptrees</subject><subject>outerplanar maps</subject><subject>Phase diagrams</subject><subject>random trees</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI4u_AcFV4KdyatNshyHcRQGBB_rcJukMkPb1KRF6q-3Y926umfxnXPhQ-ia4AXBmC5DhAXFkvETNCNYyZRyIk-PmdNUSUbP0UWMB4yxYJTN0N3W-dp1YUh8mVQQPlxy76vuu4amSXzfudBW0EBIamjjJToroYru6u_O0fvD5m39mO6et0_r1S41VAmeEmOpdcxY60ghcUFsAdLwIiNcCAM55LzMMoVBUCDCKktcRowqJBQ5Vplhc3Qz7bbBf_Yudvrg-9CMLzWlIheUqVyN1O1EmeBjDK7UbdjXEAZNsD7K0KMM_StjZJcT-7Wv3PA_qF9eV1PjB-EUYAk</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Stefánsson, Sigurdur Örn</creator><creator>Stufler, Benedikt</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201910</creationdate><title>Geometry of large Boltzmann outerplanar maps</title><author>Stefánsson, Sigurdur Örn ; Stufler, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-1cd2de3cdde1b80b1dba8c4b51477ca6a64f5590a72a17d9d1e51c9b8ab6095c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>enriched trees</topic><topic>looptrees</topic><topic>outerplanar maps</topic><topic>Phase diagrams</topic><topic>random trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefánsson, Sigurdur Örn</creatorcontrib><creatorcontrib>Stufler, Benedikt</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefánsson, Sigurdur Örn</au><au>Stufler, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of large Boltzmann outerplanar maps</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2019-10</date><risdate>2019</risdate><volume>55</volume><issue>3</issue><spage>742</spage><epage>771</epage><pages>742-771</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rsa.20834</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2019-10, Vol.55 (3), p.742-771
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_journals_2276723969
source Access via Wiley Online Library
subjects Apexes
enriched trees
looptrees
outerplanar maps
Phase diagrams
random trees
title Geometry of large Boltzmann outerplanar maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20large%20Boltzmann%20outerplanar%20maps&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Stef%C3%A1nsson,%20Sigurdur%20%C3%96rn&rft.date=2019-10&rft.volume=55&rft.issue=3&rft.spage=742&rft.epage=771&rft.pages=742-771&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20834&rft_dat=%3Cproquest_cross%3E2276723969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2276723969&rft_id=info:pmid/&rfr_iscdi=true