Geometry of large Boltzmann outerplanar maps
We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Bolt...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2019-10, Vol.55 (3), p.742-771 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 771 |
---|---|
container_issue | 3 |
container_start_page | 742 |
container_title | Random structures & algorithms |
container_volume | 55 |
creator | Stefánsson, Sigurdur Örn Stufler, Benedikt |
description | We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree. |
doi_str_mv | 10.1002/rsa.20834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2276723969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2276723969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-1cd2de3cdde1b80b1dba8c4b51477ca6a64f5590a72a17d9d1e51c9b8ab6095c3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI4u_AcFV4KdyatNshyHcRQGBB_rcJukMkPb1KRF6q-3Y926umfxnXPhQ-ia4AXBmC5DhAXFkvETNCNYyZRyIk-PmdNUSUbP0UWMB4yxYJTN0N3W-dp1YUh8mVQQPlxy76vuu4amSXzfudBW0EBIamjjJToroYru6u_O0fvD5m39mO6et0_r1S41VAmeEmOpdcxY60ghcUFsAdLwIiNcCAM55LzMMoVBUCDCKktcRowqJBQ5Vplhc3Qz7bbBf_Yudvrg-9CMLzWlIheUqVyN1O1EmeBjDK7UbdjXEAZNsD7K0KMM_StjZJcT-7Wv3PA_qF9eV1PjB-EUYAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276723969</pqid></control><display><type>article</type><title>Geometry of large Boltzmann outerplanar maps</title><source>Access via Wiley Online Library</source><creator>Stefánsson, Sigurdur Örn ; Stufler, Benedikt</creator><creatorcontrib>Stefánsson, Sigurdur Örn ; Stufler, Benedikt</creatorcontrib><description>We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20834</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Apexes ; enriched trees ; looptrees ; outerplanar maps ; Phase diagrams ; random trees</subject><ispartof>Random structures & algorithms, 2019-10, Vol.55 (3), p.742-771</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-1cd2de3cdde1b80b1dba8c4b51477ca6a64f5590a72a17d9d1e51c9b8ab6095c3</citedby><cites>FETCH-LOGICAL-c2974-1cd2de3cdde1b80b1dba8c4b51477ca6a64f5590a72a17d9d1e51c9b8ab6095c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20834$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20834$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Stefánsson, Sigurdur Örn</creatorcontrib><creatorcontrib>Stufler, Benedikt</creatorcontrib><title>Geometry of large Boltzmann outerplanar maps</title><title>Random structures & algorithms</title><description>We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.</description><subject>Apexes</subject><subject>enriched trees</subject><subject>looptrees</subject><subject>outerplanar maps</subject><subject>Phase diagrams</subject><subject>random trees</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI4u_AcFV4KdyatNshyHcRQGBB_rcJukMkPb1KRF6q-3Y926umfxnXPhQ-ia4AXBmC5DhAXFkvETNCNYyZRyIk-PmdNUSUbP0UWMB4yxYJTN0N3W-dp1YUh8mVQQPlxy76vuu4amSXzfudBW0EBIamjjJToroYru6u_O0fvD5m39mO6et0_r1S41VAmeEmOpdcxY60ghcUFsAdLwIiNcCAM55LzMMoVBUCDCKktcRowqJBQ5Vplhc3Qz7bbBf_Yudvrg-9CMLzWlIheUqVyN1O1EmeBjDK7UbdjXEAZNsD7K0KMM_StjZJcT-7Wv3PA_qF9eV1PjB-EUYAk</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Stefánsson, Sigurdur Örn</creator><creator>Stufler, Benedikt</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201910</creationdate><title>Geometry of large Boltzmann outerplanar maps</title><author>Stefánsson, Sigurdur Örn ; Stufler, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-1cd2de3cdde1b80b1dba8c4b51477ca6a64f5590a72a17d9d1e51c9b8ab6095c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>enriched trees</topic><topic>looptrees</topic><topic>outerplanar maps</topic><topic>Phase diagrams</topic><topic>random trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefánsson, Sigurdur Örn</creatorcontrib><creatorcontrib>Stufler, Benedikt</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefánsson, Sigurdur Örn</au><au>Stufler, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of large Boltzmann outerplanar maps</atitle><jtitle>Random structures & algorithms</jtitle><date>2019-10</date><risdate>2019</risdate><volume>55</volume><issue>3</issue><spage>742</spage><epage>771</epage><pages>742-771</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We study the phase diagram of random outerplanar maps sampled according to nonnegative Boltzmann weights that are assigned to each face of a map. We prove that for certain choices of weights the map looks like a rescaled version of its boundary when its number of vertices tends to infinity. The Boltzmann outerplanar maps are then shown to converge in the Gromov‐Hausdorff sense towards the α‐stable looptree introduced by Curien and Kortchemski (2014), with the parameter α depending on the specific weight‐sequence. This allows us to describe the transition of the asymptotic geometric shape from a deterministic circle to the Brownian tree.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rsa.20834</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2019-10, Vol.55 (3), p.742-771 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_journals_2276723969 |
source | Access via Wiley Online Library |
subjects | Apexes enriched trees looptrees outerplanar maps Phase diagrams random trees |
title | Geometry of large Boltzmann outerplanar maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20large%20Boltzmann%20outerplanar%20maps&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Stef%C3%A1nsson,%20Sigurdur%20%C3%96rn&rft.date=2019-10&rft.volume=55&rft.issue=3&rft.spage=742&rft.epage=771&rft.pages=742-771&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20834&rft_dat=%3Cproquest_cross%3E2276723969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2276723969&rft_id=info:pmid/&rfr_iscdi=true |