High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers
This paper presents the high-impedance fault (HIF) detection and identification in medium-voltage distribution network of 13.8 kV using discrete wavelet transform (DWT) and intelligence classifiers such as adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM). The three-phas...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2019-12, Vol.31 (12), p.9127-9143 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9143 |
---|---|
container_issue | 12 |
container_start_page | 9127 |
container_title | Neural computing & applications |
container_volume | 31 |
creator | Veerasamy, Veerapandiyan Abdul Wahab, Noor Izzri Ramachandran, Rajeswari Thirumeni, Mariammal Subramanian, Chitra Othman, Mohammad Lutfi Hizam, Hashim |
description | This paper presents the high-impedance fault (HIF) detection and identification in medium-voltage distribution network of 13.8 kV using discrete wavelet transform (DWT) and intelligence classifiers such as adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM). The three-phase feeder network is modelled in MATLAB/Simulink to obtain the fault current signal of the feeder. The acquired fault current signal for various types of faults such as three-phase fault, line to line, line to ground, double line to ground and HIF is sampled using 1st, 2nd, 3rd, 4th and 5th level of detailed coefficients and approximated by DWT analysis to extract the feature, namely standard deviation (SD) values, considering the time-varying fault impedance. The SD values drawn by DWT technique have been used to train the computational intelligence-based classifiers such as fuzzy, Bayes, multi-layer perceptron neural network, ANFIS and SVM. The performance indices such as mean absolute error, root mean square error, kappa statistic, success rate and discrimination rate are compared for various classifiers presented. The results showed that the proffered ANFIS and SVM classifiers are more effective and their performance is substantially superior than other classifiers. |
doi_str_mv | 10.1007/s00521-019-04445-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2276693335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2276693335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ace0b0c6ccb40dce9d26805a39974ee5de60a80e732aa32fc08426ec367e3cd53</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRteYsdJRlQBRUJigdly7Jfgko9iOxT-PWmDxMb0hnvP1dMh5DKB6wQgvwkAWZowSEoGQoiM7Y7IIhGcMw5ZcUwWUIoploKfkrMQNgAgZJEtyNfaNW_MdVu0ujdIaz22kVqMaKIbeup62qF1Y8c-hzbqBql1IXpXjYe4x7gb_Dsdg-sbaoZuO0a9T3Q7oRHb1jU47bJKB7TUtDoEVzv04Zyc1LoNePF7l-T1_u5ltWZPzw-Pq9snZrjkkWmDUIGRxlQCrMHSprKATPOyzAViZlGCLgBznmrN09pAIVKJE5wjNzbjS3I172798DFiiGozjH76L6g0zaUsOef7Vjq3jB9C8FirrXed9t8qAbU3rGbDajKsDobVboL4DIWp3Dfo_6b_oX4APbOC6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2276693335</pqid></control><display><type>article</type><title>High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers</title><source>SpringerLink (Online service)</source><creator>Veerasamy, Veerapandiyan ; Abdul Wahab, Noor Izzri ; Ramachandran, Rajeswari ; Thirumeni, Mariammal ; Subramanian, Chitra ; Othman, Mohammad Lutfi ; Hizam, Hashim</creator><creatorcontrib>Veerasamy, Veerapandiyan ; Abdul Wahab, Noor Izzri ; Ramachandran, Rajeswari ; Thirumeni, Mariammal ; Subramanian, Chitra ; Othman, Mohammad Lutfi ; Hizam, Hashim</creatorcontrib><description>This paper presents the high-impedance fault (HIF) detection and identification in medium-voltage distribution network of 13.8 kV using discrete wavelet transform (DWT) and intelligence classifiers such as adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM). The three-phase feeder network is modelled in MATLAB/Simulink to obtain the fault current signal of the feeder. The acquired fault current signal for various types of faults such as three-phase fault, line to line, line to ground, double line to ground and HIF is sampled using 1st, 2nd, 3rd, 4th and 5th level of detailed coefficients and approximated by DWT analysis to extract the feature, namely standard deviation (SD) values, considering the time-varying fault impedance. The SD values drawn by DWT technique have been used to train the computational intelligence-based classifiers such as fuzzy, Bayes, multi-layer perceptron neural network, ANFIS and SVM. The performance indices such as mean absolute error, root mean square error, kappa statistic, success rate and discrimination rate are compared for various classifiers presented. The results showed that the proffered ANFIS and SVM classifiers are more effective and their performance is substantially superior than other classifiers.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04445-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive systems ; Artificial Intelligence ; Artificial neural networks ; Classifiers ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Discrete Wavelet Transform ; Distribution management ; Electric potential ; Fault detection ; Feature extraction ; Fuzzy logic ; Fuzzy systems ; Image Processing and Computer Vision ; Impedance ; Multilayers ; Neural networks ; Original Article ; Performance indices ; Probability and Statistics in Computer Science ; Support vector machines ; Voltage ; Wavelet transforms</subject><ispartof>Neural computing & applications, 2019-12, Vol.31 (12), p.9127-9143</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Neural Computing and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ace0b0c6ccb40dce9d26805a39974ee5de60a80e732aa32fc08426ec367e3cd53</citedby><cites>FETCH-LOGICAL-c363t-ace0b0c6ccb40dce9d26805a39974ee5de60a80e732aa32fc08426ec367e3cd53</cites><orcidid>0000-0002-7887-2613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-019-04445-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-019-04445-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Veerasamy, Veerapandiyan</creatorcontrib><creatorcontrib>Abdul Wahab, Noor Izzri</creatorcontrib><creatorcontrib>Ramachandran, Rajeswari</creatorcontrib><creatorcontrib>Thirumeni, Mariammal</creatorcontrib><creatorcontrib>Subramanian, Chitra</creatorcontrib><creatorcontrib>Othman, Mohammad Lutfi</creatorcontrib><creatorcontrib>Hizam, Hashim</creatorcontrib><title>High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>This paper presents the high-impedance fault (HIF) detection and identification in medium-voltage distribution network of 13.8 kV using discrete wavelet transform (DWT) and intelligence classifiers such as adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM). The three-phase feeder network is modelled in MATLAB/Simulink to obtain the fault current signal of the feeder. The acquired fault current signal for various types of faults such as three-phase fault, line to line, line to ground, double line to ground and HIF is sampled using 1st, 2nd, 3rd, 4th and 5th level of detailed coefficients and approximated by DWT analysis to extract the feature, namely standard deviation (SD) values, considering the time-varying fault impedance. The SD values drawn by DWT technique have been used to train the computational intelligence-based classifiers such as fuzzy, Bayes, multi-layer perceptron neural network, ANFIS and SVM. The performance indices such as mean absolute error, root mean square error, kappa statistic, success rate and discrimination rate are compared for various classifiers presented. The results showed that the proffered ANFIS and SVM classifiers are more effective and their performance is substantially superior than other classifiers.</description><subject>Adaptive systems</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Discrete Wavelet Transform</subject><subject>Distribution management</subject><subject>Electric potential</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Image Processing and Computer Vision</subject><subject>Impedance</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Performance indices</subject><subject>Probability and Statistics in Computer Science</subject><subject>Support vector machines</subject><subject>Voltage</subject><subject>Wavelet transforms</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRteYsdJRlQBRUJigdly7Jfgko9iOxT-PWmDxMb0hnvP1dMh5DKB6wQgvwkAWZowSEoGQoiM7Y7IIhGcMw5ZcUwWUIoploKfkrMQNgAgZJEtyNfaNW_MdVu0ujdIaz22kVqMaKIbeup62qF1Y8c-hzbqBql1IXpXjYe4x7gb_Dsdg-sbaoZuO0a9T3Q7oRHb1jU47bJKB7TUtDoEVzv04Zyc1LoNePF7l-T1_u5ltWZPzw-Pq9snZrjkkWmDUIGRxlQCrMHSprKATPOyzAViZlGCLgBznmrN09pAIVKJE5wjNzbjS3I172798DFiiGozjH76L6g0zaUsOef7Vjq3jB9C8FirrXed9t8qAbU3rGbDajKsDobVboL4DIWp3Dfo_6b_oX4APbOC6g</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Veerasamy, Veerapandiyan</creator><creator>Abdul Wahab, Noor Izzri</creator><creator>Ramachandran, Rajeswari</creator><creator>Thirumeni, Mariammal</creator><creator>Subramanian, Chitra</creator><creator>Othman, Mohammad Lutfi</creator><creator>Hizam, Hashim</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7887-2613</orcidid></search><sort><creationdate>20191201</creationdate><title>High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers</title><author>Veerasamy, Veerapandiyan ; Abdul Wahab, Noor Izzri ; Ramachandran, Rajeswari ; Thirumeni, Mariammal ; Subramanian, Chitra ; Othman, Mohammad Lutfi ; Hizam, Hashim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ace0b0c6ccb40dce9d26805a39974ee5de60a80e732aa32fc08426ec367e3cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Discrete Wavelet Transform</topic><topic>Distribution management</topic><topic>Electric potential</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Image Processing and Computer Vision</topic><topic>Impedance</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Performance indices</topic><topic>Probability and Statistics in Computer Science</topic><topic>Support vector machines</topic><topic>Voltage</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veerasamy, Veerapandiyan</creatorcontrib><creatorcontrib>Abdul Wahab, Noor Izzri</creatorcontrib><creatorcontrib>Ramachandran, Rajeswari</creatorcontrib><creatorcontrib>Thirumeni, Mariammal</creatorcontrib><creatorcontrib>Subramanian, Chitra</creatorcontrib><creatorcontrib>Othman, Mohammad Lutfi</creatorcontrib><creatorcontrib>Hizam, Hashim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veerasamy, Veerapandiyan</au><au>Abdul Wahab, Noor Izzri</au><au>Ramachandran, Rajeswari</au><au>Thirumeni, Mariammal</au><au>Subramanian, Chitra</au><au>Othman, Mohammad Lutfi</au><au>Hizam, Hashim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>31</volume><issue>12</issue><spage>9127</spage><epage>9143</epage><pages>9127-9143</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper presents the high-impedance fault (HIF) detection and identification in medium-voltage distribution network of 13.8 kV using discrete wavelet transform (DWT) and intelligence classifiers such as adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM). The three-phase feeder network is modelled in MATLAB/Simulink to obtain the fault current signal of the feeder. The acquired fault current signal for various types of faults such as three-phase fault, line to line, line to ground, double line to ground and HIF is sampled using 1st, 2nd, 3rd, 4th and 5th level of detailed coefficients and approximated by DWT analysis to extract the feature, namely standard deviation (SD) values, considering the time-varying fault impedance. The SD values drawn by DWT technique have been used to train the computational intelligence-based classifiers such as fuzzy, Bayes, multi-layer perceptron neural network, ANFIS and SVM. The performance indices such as mean absolute error, root mean square error, kappa statistic, success rate and discrimination rate are compared for various classifiers presented. The results showed that the proffered ANFIS and SVM classifiers are more effective and their performance is substantially superior than other classifiers.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04445-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7887-2613</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2019-12, Vol.31 (12), p.9127-9143 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2276693335 |
source | SpringerLink (Online service) |
subjects | Adaptive systems Artificial Intelligence Artificial neural networks Classifiers Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Discrete Wavelet Transform Distribution management Electric potential Fault detection Feature extraction Fuzzy logic Fuzzy systems Image Processing and Computer Vision Impedance Multilayers Neural networks Original Article Performance indices Probability and Statistics in Computer Science Support vector machines Voltage Wavelet transforms |
title | High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-impedance%20fault%20detection%20in%20medium-voltage%20distribution%20network%20using%20computational%20intelligence-based%20classifiers&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Veerasamy,%20Veerapandiyan&rft.date=2019-12-01&rft.volume=31&rft.issue=12&rft.spage=9127&rft.epage=9143&rft.pages=9127-9143&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04445-w&rft_dat=%3Cproquest_cross%3E2276693335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2276693335&rft_id=info:pmid/&rfr_iscdi=true |