P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution

Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (33), p.19589-19596
Hauptverfasser: Wang, Feifei, Ma, Kui, Tian, Wen, Dong, Juncai, Han, Han, Wang, Huipu, Deng, Kuan, Yue, Hairong, Yu Xin Zhang, Jiang, Wei, Ji, Junyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19596
container_issue 33
container_start_page 19589
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Wang, Feifei
Ma, Kui
Tian, Wen
Dong, Juncai
Han, Han
Wang, Huipu
Deng, Kuan
Yue, Hairong
Yu Xin Zhang
Jiang, Wei
Ji, Junyi
description Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were fabricated. The phosphorization process could also introduce oxygen vacancies on the nanosheet surface. The parallel nanosheets with quasi one-dimensional channels could facilitate electrolyte/gas mass transfer and enlarge the exposed surface, thus avoiding the “dead volume” inside the hierarchical architecture. The phosphate dopant and oxygen vacancy-rich surface could increase the intrinsic electron conductivity and create sufficient active defects. Therefore, the NiMoP@CoCH/CC electrode achieved high areal capacitance (4.00 F cm−2 at 1 mA cm−2), superior rate capability (62.5% capacitance retention from 1 to 50 mA cm−2) and excellent stability (98.75% capacitance retention after 5000 cycles) in a three-electrode system. In addition, the as-prepared electrode also exhibited good electrocatalytic oxygen evolution activity in an alkaline solution (overpotential of 267 mV at 40 mA cm−2).
doi_str_mv 10.1039/c9ta04568f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2275974372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275974372</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-c90f02c58a32366ca6398e01737f33a88408af53024d29c1852a43ade2be01ea3</originalsourceid><addsrcrecordid>eNo9TclOwzAUtBBIVKUXvuBJnAOOncU-orJKhXKAc_XqvDSpgh1st7Rfw68S1Iq5zEizMXaZ8uuUS31jdESe5YWqT9hI8JwnZaaL03-t1DmbhLDmAxTnhdYj9vOW3LmeKnhtX9w8gx49dh11gN7jPgBa0zg_-M6CcUvsIhj0S2cxEjT7yrtdWxF8t7EBt9uvyMIWzdBq6a9cwSeGANGjDTV5MA1aS12A2nkIm568wR5NG50_xI8btHXdJrbOXrCzGrtAkyOP2cfD_fv0KZnNH5-nt7NkJQSPidG85sLkCqWQRWGwkFoRT0tZ1lKiUhlXWOeSi6wS2qQqF5hJrEgshxShHLOrw27v3deGQlys3cbb4XIhRJnrMpOlkL-lTG67</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275974372</pqid></control><display><type>article</type><title>P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Feifei ; Ma, Kui ; Tian, Wen ; Dong, Juncai ; Han, Han ; Wang, Huipu ; Deng, Kuan ; Yue, Hairong ; Yu Xin Zhang ; Jiang, Wei ; Ji, Junyi</creator><creatorcontrib>Wang, Feifei ; Ma, Kui ; Tian, Wen ; Dong, Juncai ; Han, Han ; Wang, Huipu ; Deng, Kuan ; Yue, Hairong ; Yu Xin Zhang ; Jiang, Wei ; Ji, Junyi</creatorcontrib><description>Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were fabricated. The phosphorization process could also introduce oxygen vacancies on the nanosheet surface. The parallel nanosheets with quasi one-dimensional channels could facilitate electrolyte/gas mass transfer and enlarge the exposed surface, thus avoiding the “dead volume” inside the hierarchical architecture. The phosphate dopant and oxygen vacancy-rich surface could increase the intrinsic electron conductivity and create sufficient active defects. Therefore, the NiMoP@CoCH/CC electrode achieved high areal capacitance (4.00 F cm−2 at 1 mA cm−2), superior rate capability (62.5% capacitance retention from 1 to 50 mA cm−2) and excellent stability (98.75% capacitance retention after 5000 cycles) in a three-electrode system. In addition, the as-prepared electrode also exhibited good electrocatalytic oxygen evolution activity in an alkaline solution (overpotential of 267 mV at 40 mA cm−2).</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta04568f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Arrays ; Capacitance ; Channels ; Chemical evolution ; Cobalt ; Dopants ; Electrodes ; Electron conductivity ; Lattice vacancies ; Mass transfer ; Molybdates ; Morphology ; Nanosheets ; Nanotechnology ; Nanowires ; Nickel compounds ; Oxygen ; Phosphating (coating) ; Retention ; Vacancies</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (33), p.19589-19596</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Ma, Kui</creatorcontrib><creatorcontrib>Tian, Wen</creatorcontrib><creatorcontrib>Dong, Juncai</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Wang, Huipu</creatorcontrib><creatorcontrib>Deng, Kuan</creatorcontrib><creatorcontrib>Yue, Hairong</creatorcontrib><creatorcontrib>Yu Xin Zhang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Ji, Junyi</creatorcontrib><title>P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were fabricated. The phosphorization process could also introduce oxygen vacancies on the nanosheet surface. The parallel nanosheets with quasi one-dimensional channels could facilitate electrolyte/gas mass transfer and enlarge the exposed surface, thus avoiding the “dead volume” inside the hierarchical architecture. The phosphate dopant and oxygen vacancy-rich surface could increase the intrinsic electron conductivity and create sufficient active defects. Therefore, the NiMoP@CoCH/CC electrode achieved high areal capacitance (4.00 F cm−2 at 1 mA cm−2), superior rate capability (62.5% capacitance retention from 1 to 50 mA cm−2) and excellent stability (98.75% capacitance retention after 5000 cycles) in a three-electrode system. In addition, the as-prepared electrode also exhibited good electrocatalytic oxygen evolution activity in an alkaline solution (overpotential of 267 mV at 40 mA cm−2).</description><subject>Arrays</subject><subject>Capacitance</subject><subject>Channels</subject><subject>Chemical evolution</subject><subject>Cobalt</subject><subject>Dopants</subject><subject>Electrodes</subject><subject>Electron conductivity</subject><subject>Lattice vacancies</subject><subject>Mass transfer</subject><subject>Molybdates</subject><subject>Morphology</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel compounds</subject><subject>Oxygen</subject><subject>Phosphating (coating)</subject><subject>Retention</subject><subject>Vacancies</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9TclOwzAUtBBIVKUXvuBJnAOOncU-orJKhXKAc_XqvDSpgh1st7Rfw68S1Iq5zEizMXaZ8uuUS31jdESe5YWqT9hI8JwnZaaL03-t1DmbhLDmAxTnhdYj9vOW3LmeKnhtX9w8gx49dh11gN7jPgBa0zg_-M6CcUvsIhj0S2cxEjT7yrtdWxF8t7EBt9uvyMIWzdBq6a9cwSeGANGjDTV5MA1aS12A2nkIm568wR5NG50_xI8btHXdJrbOXrCzGrtAkyOP2cfD_fv0KZnNH5-nt7NkJQSPidG85sLkCqWQRWGwkFoRT0tZ1lKiUhlXWOeSi6wS2qQqF5hJrEgshxShHLOrw27v3deGQlys3cbb4XIhRJnrMpOlkL-lTG67</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Feifei</creator><creator>Ma, Kui</creator><creator>Tian, Wen</creator><creator>Dong, Juncai</creator><creator>Han, Han</creator><creator>Wang, Huipu</creator><creator>Deng, Kuan</creator><creator>Yue, Hairong</creator><creator>Yu Xin Zhang</creator><creator>Jiang, Wei</creator><creator>Ji, Junyi</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2019</creationdate><title>P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution</title><author>Wang, Feifei ; Ma, Kui ; Tian, Wen ; Dong, Juncai ; Han, Han ; Wang, Huipu ; Deng, Kuan ; Yue, Hairong ; Yu Xin Zhang ; Jiang, Wei ; Ji, Junyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-c90f02c58a32366ca6398e01737f33a88408af53024d29c1852a43ade2be01ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Capacitance</topic><topic>Channels</topic><topic>Chemical evolution</topic><topic>Cobalt</topic><topic>Dopants</topic><topic>Electrodes</topic><topic>Electron conductivity</topic><topic>Lattice vacancies</topic><topic>Mass transfer</topic><topic>Molybdates</topic><topic>Morphology</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel compounds</topic><topic>Oxygen</topic><topic>Phosphating (coating)</topic><topic>Retention</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Ma, Kui</creatorcontrib><creatorcontrib>Tian, Wen</creatorcontrib><creatorcontrib>Dong, Juncai</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Wang, Huipu</creatorcontrib><creatorcontrib>Deng, Kuan</creatorcontrib><creatorcontrib>Yue, Hairong</creatorcontrib><creatorcontrib>Yu Xin Zhang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Ji, Junyi</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feifei</au><au>Ma, Kui</au><au>Tian, Wen</au><au>Dong, Juncai</au><au>Han, Han</au><au>Wang, Huipu</au><au>Deng, Kuan</au><au>Yue, Hairong</au><au>Yu Xin Zhang</au><au>Jiang, Wei</au><au>Ji, Junyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>33</issue><spage>19589</spage><epage>19596</epage><pages>19589-19596</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were fabricated. The phosphorization process could also introduce oxygen vacancies on the nanosheet surface. The parallel nanosheets with quasi one-dimensional channels could facilitate electrolyte/gas mass transfer and enlarge the exposed surface, thus avoiding the “dead volume” inside the hierarchical architecture. The phosphate dopant and oxygen vacancy-rich surface could increase the intrinsic electron conductivity and create sufficient active defects. Therefore, the NiMoP@CoCH/CC electrode achieved high areal capacitance (4.00 F cm−2 at 1 mA cm−2), superior rate capability (62.5% capacitance retention from 1 to 50 mA cm−2) and excellent stability (98.75% capacitance retention after 5000 cycles) in a three-electrode system. In addition, the as-prepared electrode also exhibited good electrocatalytic oxygen evolution activity in an alkaline solution (overpotential of 267 mV at 40 mA cm−2).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta04568f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (33), p.19589-19596
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2275974372
source Royal Society Of Chemistry Journals 2008-
subjects Arrays
Capacitance
Channels
Chemical evolution
Cobalt
Dopants
Electrodes
Electron conductivity
Lattice vacancies
Mass transfer
Molybdates
Morphology
Nanosheets
Nanotechnology
Nanowires
Nickel compounds
Oxygen
Phosphating (coating)
Retention
Vacancies
title P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-Doped%20NiMoO4%20parallel%20arrays%20anchored%20on%20cobalt%20carbonate%20hydroxide%20with%20oxygen%20vacancies%20and%20mass%20transfer%20channels%20for%20supercapacitors%20and%20oxygen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Feifei&rft.date=2019&rft.volume=7&rft.issue=33&rft.spage=19589&rft.epage=19596&rft.pages=19589-19596&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta04568f&rft_dat=%3Cproquest%3E2275974372%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275974372&rft_id=info:pmid/&rfr_iscdi=true