P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution
Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (33), p.19589-19596 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19596 |
---|---|
container_issue | 33 |
container_start_page | 19589 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Wang, Feifei Ma, Kui Tian, Wen Dong, Juncai Han, Han Wang, Huipu Deng, Kuan Yue, Hairong Yu Xin Zhang Jiang, Wei Ji, Junyi |
description | Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were fabricated. The phosphorization process could also introduce oxygen vacancies on the nanosheet surface. The parallel nanosheets with quasi one-dimensional channels could facilitate electrolyte/gas mass transfer and enlarge the exposed surface, thus avoiding the “dead volume” inside the hierarchical architecture. The phosphate dopant and oxygen vacancy-rich surface could increase the intrinsic electron conductivity and create sufficient active defects. Therefore, the NiMoP@CoCH/CC electrode achieved high areal capacitance (4.00 F cm−2 at 1 mA cm−2), superior rate capability (62.5% capacitance retention from 1 to 50 mA cm−2) and excellent stability (98.75% capacitance retention after 5000 cycles) in a three-electrode system. In addition, the as-prepared electrode also exhibited good electrocatalytic oxygen evolution activity in an alkaline solution (overpotential of 267 mV at 40 mA cm−2). |
doi_str_mv | 10.1039/c9ta04568f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2275974372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275974372</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-c90f02c58a32366ca6398e01737f33a88408af53024d29c1852a43ade2be01ea3</originalsourceid><addsrcrecordid>eNo9TclOwzAUtBBIVKUXvuBJnAOOncU-orJKhXKAc_XqvDSpgh1st7Rfw68S1Iq5zEizMXaZ8uuUS31jdESe5YWqT9hI8JwnZaaL03-t1DmbhLDmAxTnhdYj9vOW3LmeKnhtX9w8gx49dh11gN7jPgBa0zg_-M6CcUvsIhj0S2cxEjT7yrtdWxF8t7EBt9uvyMIWzdBq6a9cwSeGANGjDTV5MA1aS12A2nkIm568wR5NG50_xI8btHXdJrbOXrCzGrtAkyOP2cfD_fv0KZnNH5-nt7NkJQSPidG85sLkCqWQRWGwkFoRT0tZ1lKiUhlXWOeSi6wS2qQqF5hJrEgshxShHLOrw27v3deGQlys3cbb4XIhRJnrMpOlkL-lTG67</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275974372</pqid></control><display><type>article</type><title>P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Feifei ; Ma, Kui ; Tian, Wen ; Dong, Juncai ; Han, Han ; Wang, Huipu ; Deng, Kuan ; Yue, Hairong ; Yu Xin Zhang ; Jiang, Wei ; Ji, Junyi</creator><creatorcontrib>Wang, Feifei ; Ma, Kui ; Tian, Wen ; Dong, Juncai ; Han, Han ; Wang, Huipu ; Deng, Kuan ; Yue, Hairong ; Yu Xin Zhang ; Jiang, Wei ; Ji, Junyi</creatorcontrib><description>Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were fabricated. The phosphorization process could also introduce oxygen vacancies on the nanosheet surface. The parallel nanosheets with quasi one-dimensional channels could facilitate electrolyte/gas mass transfer and enlarge the exposed surface, thus avoiding the “dead volume” inside the hierarchical architecture. The phosphate dopant and oxygen vacancy-rich surface could increase the intrinsic electron conductivity and create sufficient active defects. Therefore, the NiMoP@CoCH/CC electrode achieved high areal capacitance (4.00 F cm−2 at 1 mA cm−2), superior rate capability (62.5% capacitance retention from 1 to 50 mA cm−2) and excellent stability (98.75% capacitance retention after 5000 cycles) in a three-electrode system. In addition, the as-prepared electrode also exhibited good electrocatalytic oxygen evolution activity in an alkaline solution (overpotential of 267 mV at 40 mA cm−2).</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta04568f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Arrays ; Capacitance ; Channels ; Chemical evolution ; Cobalt ; Dopants ; Electrodes ; Electron conductivity ; Lattice vacancies ; Mass transfer ; Molybdates ; Morphology ; Nanosheets ; Nanotechnology ; Nanowires ; Nickel compounds ; Oxygen ; Phosphating (coating) ; Retention ; Vacancies</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (33), p.19589-19596</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Ma, Kui</creatorcontrib><creatorcontrib>Tian, Wen</creatorcontrib><creatorcontrib>Dong, Juncai</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Wang, Huipu</creatorcontrib><creatorcontrib>Deng, Kuan</creatorcontrib><creatorcontrib>Yue, Hairong</creatorcontrib><creatorcontrib>Yu Xin Zhang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Ji, Junyi</creatorcontrib><title>P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were fabricated. The phosphorization process could also introduce oxygen vacancies on the nanosheet surface. The parallel nanosheets with quasi one-dimensional channels could facilitate electrolyte/gas mass transfer and enlarge the exposed surface, thus avoiding the “dead volume” inside the hierarchical architecture. The phosphate dopant and oxygen vacancy-rich surface could increase the intrinsic electron conductivity and create sufficient active defects. Therefore, the NiMoP@CoCH/CC electrode achieved high areal capacitance (4.00 F cm−2 at 1 mA cm−2), superior rate capability (62.5% capacitance retention from 1 to 50 mA cm−2) and excellent stability (98.75% capacitance retention after 5000 cycles) in a three-electrode system. In addition, the as-prepared electrode also exhibited good electrocatalytic oxygen evolution activity in an alkaline solution (overpotential of 267 mV at 40 mA cm−2).</description><subject>Arrays</subject><subject>Capacitance</subject><subject>Channels</subject><subject>Chemical evolution</subject><subject>Cobalt</subject><subject>Dopants</subject><subject>Electrodes</subject><subject>Electron conductivity</subject><subject>Lattice vacancies</subject><subject>Mass transfer</subject><subject>Molybdates</subject><subject>Morphology</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Nickel compounds</subject><subject>Oxygen</subject><subject>Phosphating (coating)</subject><subject>Retention</subject><subject>Vacancies</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9TclOwzAUtBBIVKUXvuBJnAOOncU-orJKhXKAc_XqvDSpgh1st7Rfw68S1Iq5zEizMXaZ8uuUS31jdESe5YWqT9hI8JwnZaaL03-t1DmbhLDmAxTnhdYj9vOW3LmeKnhtX9w8gx49dh11gN7jPgBa0zg_-M6CcUvsIhj0S2cxEjT7yrtdWxF8t7EBt9uvyMIWzdBq6a9cwSeGANGjDTV5MA1aS12A2nkIm568wR5NG50_xI8btHXdJrbOXrCzGrtAkyOP2cfD_fv0KZnNH5-nt7NkJQSPidG85sLkCqWQRWGwkFoRT0tZ1lKiUhlXWOeSi6wS2qQqF5hJrEgshxShHLOrw27v3deGQlys3cbb4XIhRJnrMpOlkL-lTG67</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Feifei</creator><creator>Ma, Kui</creator><creator>Tian, Wen</creator><creator>Dong, Juncai</creator><creator>Han, Han</creator><creator>Wang, Huipu</creator><creator>Deng, Kuan</creator><creator>Yue, Hairong</creator><creator>Yu Xin Zhang</creator><creator>Jiang, Wei</creator><creator>Ji, Junyi</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2019</creationdate><title>P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution</title><author>Wang, Feifei ; Ma, Kui ; Tian, Wen ; Dong, Juncai ; Han, Han ; Wang, Huipu ; Deng, Kuan ; Yue, Hairong ; Yu Xin Zhang ; Jiang, Wei ; Ji, Junyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-c90f02c58a32366ca6398e01737f33a88408af53024d29c1852a43ade2be01ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Capacitance</topic><topic>Channels</topic><topic>Chemical evolution</topic><topic>Cobalt</topic><topic>Dopants</topic><topic>Electrodes</topic><topic>Electron conductivity</topic><topic>Lattice vacancies</topic><topic>Mass transfer</topic><topic>Molybdates</topic><topic>Morphology</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Nickel compounds</topic><topic>Oxygen</topic><topic>Phosphating (coating)</topic><topic>Retention</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Ma, Kui</creatorcontrib><creatorcontrib>Tian, Wen</creatorcontrib><creatorcontrib>Dong, Juncai</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Wang, Huipu</creatorcontrib><creatorcontrib>Deng, Kuan</creatorcontrib><creatorcontrib>Yue, Hairong</creatorcontrib><creatorcontrib>Yu Xin Zhang</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Ji, Junyi</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feifei</au><au>Ma, Kui</au><au>Tian, Wen</au><au>Dong, Juncai</au><au>Han, Han</au><au>Wang, Huipu</au><au>Deng, Kuan</au><au>Yue, Hairong</au><au>Yu Xin Zhang</au><au>Jiang, Wei</au><au>Ji, Junyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>33</issue><spage>19589</spage><epage>19596</epage><pages>19589-19596</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Proper morphology design and surface dopant/vacancy engineering can effectively enlarge the exposed active surface and improve the intrinsic activity of electrodes. Herein, three-dimensional P-doped NiMoO4 (NiMoP) parallel nanosheets anchored on cobalt carbonate hydroxide (CoCH) nanowire arrays were fabricated. The phosphorization process could also introduce oxygen vacancies on the nanosheet surface. The parallel nanosheets with quasi one-dimensional channels could facilitate electrolyte/gas mass transfer and enlarge the exposed surface, thus avoiding the “dead volume” inside the hierarchical architecture. The phosphate dopant and oxygen vacancy-rich surface could increase the intrinsic electron conductivity and create sufficient active defects. Therefore, the NiMoP@CoCH/CC electrode achieved high areal capacitance (4.00 F cm−2 at 1 mA cm−2), superior rate capability (62.5% capacitance retention from 1 to 50 mA cm−2) and excellent stability (98.75% capacitance retention after 5000 cycles) in a three-electrode system. In addition, the as-prepared electrode also exhibited good electrocatalytic oxygen evolution activity in an alkaline solution (overpotential of 267 mV at 40 mA cm−2).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta04568f</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (33), p.19589-19596 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2275974372 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Arrays Capacitance Channels Chemical evolution Cobalt Dopants Electrodes Electron conductivity Lattice vacancies Mass transfer Molybdates Morphology Nanosheets Nanotechnology Nanowires Nickel compounds Oxygen Phosphating (coating) Retention Vacancies |
title | P-Doped NiMoO4 parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-Doped%20NiMoO4%20parallel%20arrays%20anchored%20on%20cobalt%20carbonate%20hydroxide%20with%20oxygen%20vacancies%20and%20mass%20transfer%20channels%20for%20supercapacitors%20and%20oxygen%20evolution&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Feifei&rft.date=2019&rft.volume=7&rft.issue=33&rft.spage=19589&rft.epage=19596&rft.pages=19589-19596&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta04568f&rft_dat=%3Cproquest%3E2275974372%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275974372&rft_id=info:pmid/&rfr_iscdi=true |