Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks

Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2019-09, Vol.19 (18), p.8303-8316
Hauptverfasser: Diao, Jin, Zhao, Deng, Wang, Junping, Nguyen, Hien M., Tang, Jine, Zhou, Zhangbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8316
container_issue 18
container_start_page 8303
container_title IEEE sensors journal
container_volume 19
creator Diao, Jin
Zhao, Deng
Wang, Junping
Nguyen, Hien M.
Tang, Jine
Zhou, Zhangbing
description Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an energy-efficient boundary detection mechanism in IoT sensing networks. Specifically, a sleeping mechanism is adapted to detect the relatively coarse boundary through applying the convex hull algorithm, where only the relay nodes are activated. Leveraging the analysis of the relation for corresponding boundary nodes, the boundary area around a boundary node is categorized as three types of sub-areas with the descending possibility of event occurrence, i.e., the most possible, possible, and impossible areas. An optimized greedy algorithm is adapted to selectively activate certain numbers of one-hop neighboring IoT nodes in respective sub-areas, to avoid the activation of all one-hop neighboring nodes in a flooding manner. Consequently, the boundary is refined and optimized according to sensory data of these activated IoT nodes. The experimental results demonstrate that this technique can achieve a better detection accuracy, while reducing energy consumption to a large extent, than the state of art's techniques.
doi_str_mv 10.1109/JSEN.2019.2919580
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2275601075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8723622</ieee_id><sourcerecordid>2275601075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-264f086a93e946c06efee996eee3f883a782c6395236cb1bdb1bd6c46c9885813</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx-brqHXVSmmRVvC2bNOkpGpSk12k_94sLR6GGYZnZt55AbjGaIQxUnevi2o2IgirEVFYMYlOwAAzJgssSnna1xQVJRUf5-AipS3KpGBiAN4qb-JmX1TWOu2Mb-FD6Py6iXv4aFqjWxc8DBaOg2-d70KX4Hy1zf0EnYeTsIQL45PzGzgz7W-In-kSnNnmK5mrYx6C96dqOX4ppvPnyfh-Wmha4rYgvLRI8kZRo0quETfWGKW4MYZaKWkjJNGcKkYo1yu8WvfBdUaVlExiOgS3h727GH46k9p6G7ro88maEME4wkiwTOEDpWNIKRpb76L7zu_VGNW9c3XvXN07Vx-dyzM3hxmXxfzzUmQlhNA_tsBpzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275601075</pqid></control><display><type>article</type><title>Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Diao, Jin ; Zhao, Deng ; Wang, Junping ; Nguyen, Hien M. ; Tang, Jine ; Zhou, Zhangbing</creator><creatorcontrib>Diao, Jin ; Zhao, Deng ; Wang, Junping ; Nguyen, Hien M. ; Tang, Jine ; Zhou, Zhangbing</creatorcontrib><description>Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an energy-efficient boundary detection mechanism in IoT sensing networks. Specifically, a sleeping mechanism is adapted to detect the relatively coarse boundary through applying the convex hull algorithm, where only the relay nodes are activated. Leveraging the analysis of the relation for corresponding boundary nodes, the boundary area around a boundary node is categorized as three types of sub-areas with the descending possibility of event occurrence, i.e., the most possible, possible, and impossible areas. An optimized greedy algorithm is adapted to selectively activate certain numbers of one-hop neighboring IoT nodes in respective sub-areas, to avoid the activation of all one-hop neighboring nodes in a flooding manner. Consequently, the boundary is refined and optimized according to sensory data of these activated IoT nodes. The experimental results demonstrate that this technique can achieve a better detection accuracy, while reducing energy consumption to a large extent, than the state of art's techniques.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2919580</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base stations ; Boundary detection ; Computational geometry ; continuous objects ; Convexity ; Detection ; Energy consumption ; energy efficiency ; Flooding ; Greedy algorithms ; Hulls ; Internet of Things ; IoT sensing networks ; Mobile nodes ; Nodes ; Object recognition ; Relays ; Sensors</subject><ispartof>IEEE sensors journal, 2019-09, Vol.19 (18), p.8303-8316</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-264f086a93e946c06efee996eee3f883a782c6395236cb1bdb1bd6c46c9885813</citedby><cites>FETCH-LOGICAL-c341t-264f086a93e946c06efee996eee3f883a782c6395236cb1bdb1bd6c46c9885813</cites><orcidid>0000-0002-3195-2253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8723622$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8723622$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diao, Jin</creatorcontrib><creatorcontrib>Zhao, Deng</creatorcontrib><creatorcontrib>Wang, Junping</creatorcontrib><creatorcontrib>Nguyen, Hien M.</creatorcontrib><creatorcontrib>Tang, Jine</creatorcontrib><creatorcontrib>Zhou, Zhangbing</creatorcontrib><title>Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an energy-efficient boundary detection mechanism in IoT sensing networks. Specifically, a sleeping mechanism is adapted to detect the relatively coarse boundary through applying the convex hull algorithm, where only the relay nodes are activated. Leveraging the analysis of the relation for corresponding boundary nodes, the boundary area around a boundary node is categorized as three types of sub-areas with the descending possibility of event occurrence, i.e., the most possible, possible, and impossible areas. An optimized greedy algorithm is adapted to selectively activate certain numbers of one-hop neighboring IoT nodes in respective sub-areas, to avoid the activation of all one-hop neighboring nodes in a flooding manner. Consequently, the boundary is refined and optimized according to sensory data of these activated IoT nodes. The experimental results demonstrate that this technique can achieve a better detection accuracy, while reducing energy consumption to a large extent, than the state of art's techniques.</description><subject>Base stations</subject><subject>Boundary detection</subject><subject>Computational geometry</subject><subject>continuous objects</subject><subject>Convexity</subject><subject>Detection</subject><subject>Energy consumption</subject><subject>energy efficiency</subject><subject>Flooding</subject><subject>Greedy algorithms</subject><subject>Hulls</subject><subject>Internet of Things</subject><subject>IoT sensing networks</subject><subject>Mobile nodes</subject><subject>Nodes</subject><subject>Object recognition</subject><subject>Relays</subject><subject>Sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx-brqHXVSmmRVvC2bNOkpGpSk12k_94sLR6GGYZnZt55AbjGaIQxUnevi2o2IgirEVFYMYlOwAAzJgssSnna1xQVJRUf5-AipS3KpGBiAN4qb-JmX1TWOu2Mb-FD6Py6iXv4aFqjWxc8DBaOg2-d70KX4Hy1zf0EnYeTsIQL45PzGzgz7W-In-kSnNnmK5mrYx6C96dqOX4ppvPnyfh-Wmha4rYgvLRI8kZRo0quETfWGKW4MYZaKWkjJNGcKkYo1yu8WvfBdUaVlExiOgS3h727GH46k9p6G7ro88maEME4wkiwTOEDpWNIKRpb76L7zu_VGNW9c3XvXN07Vx-dyzM3hxmXxfzzUmQlhNA_tsBpzw</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Diao, Jin</creator><creator>Zhao, Deng</creator><creator>Wang, Junping</creator><creator>Nguyen, Hien M.</creator><creator>Tang, Jine</creator><creator>Zhou, Zhangbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3195-2253</orcidid></search><sort><creationdate>20190915</creationdate><title>Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks</title><author>Diao, Jin ; Zhao, Deng ; Wang, Junping ; Nguyen, Hien M. ; Tang, Jine ; Zhou, Zhangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-264f086a93e946c06efee996eee3f883a782c6395236cb1bdb1bd6c46c9885813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Base stations</topic><topic>Boundary detection</topic><topic>Computational geometry</topic><topic>continuous objects</topic><topic>Convexity</topic><topic>Detection</topic><topic>Energy consumption</topic><topic>energy efficiency</topic><topic>Flooding</topic><topic>Greedy algorithms</topic><topic>Hulls</topic><topic>Internet of Things</topic><topic>IoT sensing networks</topic><topic>Mobile nodes</topic><topic>Nodes</topic><topic>Object recognition</topic><topic>Relays</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diao, Jin</creatorcontrib><creatorcontrib>Zhao, Deng</creatorcontrib><creatorcontrib>Wang, Junping</creatorcontrib><creatorcontrib>Nguyen, Hien M.</creatorcontrib><creatorcontrib>Tang, Jine</creatorcontrib><creatorcontrib>Zhou, Zhangbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diao, Jin</au><au>Zhao, Deng</au><au>Wang, Junping</au><au>Nguyen, Hien M.</au><au>Tang, Jine</au><au>Zhou, Zhangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>19</volume><issue>18</issue><spage>8303</spage><epage>8316</epage><pages>8303-8316</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an energy-efficient boundary detection mechanism in IoT sensing networks. Specifically, a sleeping mechanism is adapted to detect the relatively coarse boundary through applying the convex hull algorithm, where only the relay nodes are activated. Leveraging the analysis of the relation for corresponding boundary nodes, the boundary area around a boundary node is categorized as three types of sub-areas with the descending possibility of event occurrence, i.e., the most possible, possible, and impossible areas. An optimized greedy algorithm is adapted to selectively activate certain numbers of one-hop neighboring IoT nodes in respective sub-areas, to avoid the activation of all one-hop neighboring nodes in a flooding manner. Consequently, the boundary is refined and optimized according to sensory data of these activated IoT nodes. The experimental results demonstrate that this technique can achieve a better detection accuracy, while reducing energy consumption to a large extent, than the state of art's techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2919580</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3195-2253</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-09, Vol.19 (18), p.8303-8316
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2275601075
source IEEE Electronic Library (IEL)
subjects Base stations
Boundary detection
Computational geometry
continuous objects
Convexity
Detection
Energy consumption
energy efficiency
Flooding
Greedy algorithms
Hulls
Internet of Things
IoT sensing networks
Mobile nodes
Nodes
Object recognition
Relays
Sensors
title Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Boundary%20Detection%20of%20Continuous%20Objects%20in%20IoT%20Sensing%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Diao,%20Jin&rft.date=2019-09-15&rft.volume=19&rft.issue=18&rft.spage=8303&rft.epage=8316&rft.pages=8303-8316&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2919580&rft_dat=%3Cproquest_RIE%3E2275601075%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275601075&rft_id=info:pmid/&rft_ieee_id=8723622&rfr_iscdi=true