Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks
Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an e...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2019-09, Vol.19 (18), p.8303-8316 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8316 |
---|---|
container_issue | 18 |
container_start_page | 8303 |
container_title | IEEE sensors journal |
container_volume | 19 |
creator | Diao, Jin Zhao, Deng Wang, Junping Nguyen, Hien M. Tang, Jine Zhou, Zhangbing |
description | Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an energy-efficient boundary detection mechanism in IoT sensing networks. Specifically, a sleeping mechanism is adapted to detect the relatively coarse boundary through applying the convex hull algorithm, where only the relay nodes are activated. Leveraging the analysis of the relation for corresponding boundary nodes, the boundary area around a boundary node is categorized as three types of sub-areas with the descending possibility of event occurrence, i.e., the most possible, possible, and impossible areas. An optimized greedy algorithm is adapted to selectively activate certain numbers of one-hop neighboring IoT nodes in respective sub-areas, to avoid the activation of all one-hop neighboring nodes in a flooding manner. Consequently, the boundary is refined and optimized according to sensory data of these activated IoT nodes. The experimental results demonstrate that this technique can achieve a better detection accuracy, while reducing energy consumption to a large extent, than the state of art's techniques. |
doi_str_mv | 10.1109/JSEN.2019.2919580 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2275601075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8723622</ieee_id><sourcerecordid>2275601075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-264f086a93e946c06efee996eee3f883a782c6395236cb1bdb1bd6c46c9885813</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx-brqHXVSmmRVvC2bNOkpGpSk12k_94sLR6GGYZnZt55AbjGaIQxUnevi2o2IgirEVFYMYlOwAAzJgssSnna1xQVJRUf5-AipS3KpGBiAN4qb-JmX1TWOu2Mb-FD6Py6iXv4aFqjWxc8DBaOg2-d70KX4Hy1zf0EnYeTsIQL45PzGzgz7W-In-kSnNnmK5mrYx6C96dqOX4ppvPnyfh-Wmha4rYgvLRI8kZRo0quETfWGKW4MYZaKWkjJNGcKkYo1yu8WvfBdUaVlExiOgS3h727GH46k9p6G7ro88maEME4wkiwTOEDpWNIKRpb76L7zu_VGNW9c3XvXN07Vx-dyzM3hxmXxfzzUmQlhNA_tsBpzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275601075</pqid></control><display><type>article</type><title>Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Diao, Jin ; Zhao, Deng ; Wang, Junping ; Nguyen, Hien M. ; Tang, Jine ; Zhou, Zhangbing</creator><creatorcontrib>Diao, Jin ; Zhao, Deng ; Wang, Junping ; Nguyen, Hien M. ; Tang, Jine ; Zhou, Zhangbing</creatorcontrib><description>Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an energy-efficient boundary detection mechanism in IoT sensing networks. Specifically, a sleeping mechanism is adapted to detect the relatively coarse boundary through applying the convex hull algorithm, where only the relay nodes are activated. Leveraging the analysis of the relation for corresponding boundary nodes, the boundary area around a boundary node is categorized as three types of sub-areas with the descending possibility of event occurrence, i.e., the most possible, possible, and impossible areas. An optimized greedy algorithm is adapted to selectively activate certain numbers of one-hop neighboring IoT nodes in respective sub-areas, to avoid the activation of all one-hop neighboring nodes in a flooding manner. Consequently, the boundary is refined and optimized according to sensory data of these activated IoT nodes. The experimental results demonstrate that this technique can achieve a better detection accuracy, while reducing energy consumption to a large extent, than the state of art's techniques.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2919580</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base stations ; Boundary detection ; Computational geometry ; continuous objects ; Convexity ; Detection ; Energy consumption ; energy efficiency ; Flooding ; Greedy algorithms ; Hulls ; Internet of Things ; IoT sensing networks ; Mobile nodes ; Nodes ; Object recognition ; Relays ; Sensors</subject><ispartof>IEEE sensors journal, 2019-09, Vol.19 (18), p.8303-8316</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-264f086a93e946c06efee996eee3f883a782c6395236cb1bdb1bd6c46c9885813</citedby><cites>FETCH-LOGICAL-c341t-264f086a93e946c06efee996eee3f883a782c6395236cb1bdb1bd6c46c9885813</cites><orcidid>0000-0002-3195-2253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8723622$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8723622$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diao, Jin</creatorcontrib><creatorcontrib>Zhao, Deng</creatorcontrib><creatorcontrib>Wang, Junping</creatorcontrib><creatorcontrib>Nguyen, Hien M.</creatorcontrib><creatorcontrib>Tang, Jine</creatorcontrib><creatorcontrib>Zhou, Zhangbing</creatorcontrib><title>Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an energy-efficient boundary detection mechanism in IoT sensing networks. Specifically, a sleeping mechanism is adapted to detect the relatively coarse boundary through applying the convex hull algorithm, where only the relay nodes are activated. Leveraging the analysis of the relation for corresponding boundary nodes, the boundary area around a boundary node is categorized as three types of sub-areas with the descending possibility of event occurrence, i.e., the most possible, possible, and impossible areas. An optimized greedy algorithm is adapted to selectively activate certain numbers of one-hop neighboring IoT nodes in respective sub-areas, to avoid the activation of all one-hop neighboring nodes in a flooding manner. Consequently, the boundary is refined and optimized according to sensory data of these activated IoT nodes. The experimental results demonstrate that this technique can achieve a better detection accuracy, while reducing energy consumption to a large extent, than the state of art's techniques.</description><subject>Base stations</subject><subject>Boundary detection</subject><subject>Computational geometry</subject><subject>continuous objects</subject><subject>Convexity</subject><subject>Detection</subject><subject>Energy consumption</subject><subject>energy efficiency</subject><subject>Flooding</subject><subject>Greedy algorithms</subject><subject>Hulls</subject><subject>Internet of Things</subject><subject>IoT sensing networks</subject><subject>Mobile nodes</subject><subject>Nodes</subject><subject>Object recognition</subject><subject>Relays</subject><subject>Sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx-brqHXVSmmRVvC2bNOkpGpSk12k_94sLR6GGYZnZt55AbjGaIQxUnevi2o2IgirEVFYMYlOwAAzJgssSnna1xQVJRUf5-AipS3KpGBiAN4qb-JmX1TWOu2Mb-FD6Py6iXv4aFqjWxc8DBaOg2-d70KX4Hy1zf0EnYeTsIQL45PzGzgz7W-In-kSnNnmK5mrYx6C96dqOX4ppvPnyfh-Wmha4rYgvLRI8kZRo0quETfWGKW4MYZaKWkjJNGcKkYo1yu8WvfBdUaVlExiOgS3h727GH46k9p6G7ro88maEME4wkiwTOEDpWNIKRpb76L7zu_VGNW9c3XvXN07Vx-dyzM3hxmXxfzzUmQlhNA_tsBpzw</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Diao, Jin</creator><creator>Zhao, Deng</creator><creator>Wang, Junping</creator><creator>Nguyen, Hien M.</creator><creator>Tang, Jine</creator><creator>Zhou, Zhangbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3195-2253</orcidid></search><sort><creationdate>20190915</creationdate><title>Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks</title><author>Diao, Jin ; Zhao, Deng ; Wang, Junping ; Nguyen, Hien M. ; Tang, Jine ; Zhou, Zhangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-264f086a93e946c06efee996eee3f883a782c6395236cb1bdb1bd6c46c9885813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Base stations</topic><topic>Boundary detection</topic><topic>Computational geometry</topic><topic>continuous objects</topic><topic>Convexity</topic><topic>Detection</topic><topic>Energy consumption</topic><topic>energy efficiency</topic><topic>Flooding</topic><topic>Greedy algorithms</topic><topic>Hulls</topic><topic>Internet of Things</topic><topic>IoT sensing networks</topic><topic>Mobile nodes</topic><topic>Nodes</topic><topic>Object recognition</topic><topic>Relays</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diao, Jin</creatorcontrib><creatorcontrib>Zhao, Deng</creatorcontrib><creatorcontrib>Wang, Junping</creatorcontrib><creatorcontrib>Nguyen, Hien M.</creatorcontrib><creatorcontrib>Tang, Jine</creatorcontrib><creatorcontrib>Zhou, Zhangbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diao, Jin</au><au>Zhao, Deng</au><au>Wang, Junping</au><au>Nguyen, Hien M.</au><au>Tang, Jine</au><au>Zhou, Zhangbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>19</volume><issue>18</issue><spage>8303</spage><epage>8316</epage><pages>8303-8316</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Sensing network of the Internet of Things (IoT) has become the infrastructure to facilitate the near real-time monitoring of potential events, where the accuracy and energy-efficiency are essential factors to be considered when determining the boundary of continuous objects. This paper proposes an energy-efficient boundary detection mechanism in IoT sensing networks. Specifically, a sleeping mechanism is adapted to detect the relatively coarse boundary through applying the convex hull algorithm, where only the relay nodes are activated. Leveraging the analysis of the relation for corresponding boundary nodes, the boundary area around a boundary node is categorized as three types of sub-areas with the descending possibility of event occurrence, i.e., the most possible, possible, and impossible areas. An optimized greedy algorithm is adapted to selectively activate certain numbers of one-hop neighboring IoT nodes in respective sub-areas, to avoid the activation of all one-hop neighboring nodes in a flooding manner. Consequently, the boundary is refined and optimized according to sensory data of these activated IoT nodes. The experimental results demonstrate that this technique can achieve a better detection accuracy, while reducing energy consumption to a large extent, than the state of art's techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2919580</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3195-2253</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2019-09, Vol.19 (18), p.8303-8316 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2275601075 |
source | IEEE Electronic Library (IEL) |
subjects | Base stations Boundary detection Computational geometry continuous objects Convexity Detection Energy consumption energy efficiency Flooding Greedy algorithms Hulls Internet of Things IoT sensing networks Mobile nodes Nodes Object recognition Relays Sensors |
title | Energy-Efficient Boundary Detection of Continuous Objects in IoT Sensing Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Boundary%20Detection%20of%20Continuous%20Objects%20in%20IoT%20Sensing%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Diao,%20Jin&rft.date=2019-09-15&rft.volume=19&rft.issue=18&rft.spage=8303&rft.epage=8316&rft.pages=8303-8316&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2919580&rft_dat=%3Cproquest_RIE%3E2275601075%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275601075&rft_id=info:pmid/&rft_ieee_id=8723622&rfr_iscdi=true |