An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism
Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their w...
Gespeichert in:
Veröffentlicht in: | Ionics 2019-09, Vol.25 (9), p.4189-4196 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4196 |
---|---|
container_issue | 9 |
container_start_page | 4189 |
container_title | Ionics |
container_volume | 25 |
creator | Niu, Congsu Zhang, Yiwei Ma, Shuai Wan, Yonghua Yang, Hui Liu, Xiaomin |
description | Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g
−1
and the high energy density of 374.7 Wh kg
−1
. In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process. |
doi_str_mv | 10.1007/s11581-019-03003-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273819439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273819439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a0154b0ceebec4f01ad247cefed2b3d6767cd070378167147010c1c85fb4900d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKt_wFXA9ei9k-lkZlmKLyi40XXIJHfalHm0SQbpvzdawZ2rwOWcL3AYu0W4RwD5EBAXFWaAdQYCQGTyjM2wKvMMZAnnbAZ1ITMJhbxkVyHsAMoSczljn8uBuyGS78k6HYlH6vfkdZw88TBaN_XcjPt04mbbjd5Z4o2OSTjyKbhhw904OMM7d5ic5dSRiX7sjmlJD5a7GLiljddWxwTynsxWDy701-yi1V2gm993zj6eHt9XL9n67fl1tVxnRmAdMw24KBowRA2ZogXUNi-koZZs3ghbylIaCxKErLCUWEhAMGiqRdsUNYAVc3Z32t378TBRiGo3Tn5IX6o8l6LCuhB1ovITZfwYgqdW7b3rtT8qBPUdWJ0CqxRY_QRWMkniJIUEDxvyf9P_WF9yoIC_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273819439</pqid></control><display><type>article</type><title>An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Niu, Congsu ; Zhang, Yiwei ; Ma, Shuai ; Wan, Yonghua ; Yang, Hui ; Liu, Xiaomin</creator><creatorcontrib>Niu, Congsu ; Zhang, Yiwei ; Ma, Shuai ; Wan, Yonghua ; Yang, Hui ; Liu, Xiaomin</creatorcontrib><description>Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g
−1
and the high energy density of 374.7 Wh kg
−1
. In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-019-03003-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum oxide ; Batteries ; Cathodes ; Chemistry ; Chemistry and Materials Science ; Chloride ; Condensed Matter Physics ; Copper ; Copper chloride ; Degradation ; Electrochemistry ; Electrolytes ; Energy Storage ; Flux density ; Ionic liquids ; Lithium ; Metal chlorides ; Metal foams ; Operating temperature ; Optical and Electronic Materials ; Original Paper ; Renewable and Green Energy ; Sodium ; Sodium chloride ; Solid electrolytes ; Thermal management</subject><ispartof>Ionics, 2019-09, Vol.25 (9), p.4189-4196</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a0154b0ceebec4f01ad247cefed2b3d6767cd070378167147010c1c85fb4900d3</citedby><cites>FETCH-LOGICAL-c319t-a0154b0ceebec4f01ad247cefed2b3d6767cd070378167147010c1c85fb4900d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-019-03003-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-019-03003-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Niu, Congsu</creatorcontrib><creatorcontrib>Zhang, Yiwei</creatorcontrib><creatorcontrib>Ma, Shuai</creatorcontrib><creatorcontrib>Wan, Yonghua</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Liu, Xiaomin</creatorcontrib><title>An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g
−1
and the high energy density of 374.7 Wh kg
−1
. In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process.</description><subject>Aluminum oxide</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chloride</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Copper chloride</subject><subject>Degradation</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Flux density</subject><subject>Ionic liquids</subject><subject>Lithium</subject><subject>Metal chlorides</subject><subject>Metal foams</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Renewable and Green Energy</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Solid electrolytes</subject><subject>Thermal management</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKt_wFXA9ei9k-lkZlmKLyi40XXIJHfalHm0SQbpvzdawZ2rwOWcL3AYu0W4RwD5EBAXFWaAdQYCQGTyjM2wKvMMZAnnbAZ1ITMJhbxkVyHsAMoSczljn8uBuyGS78k6HYlH6vfkdZw88TBaN_XcjPt04mbbjd5Z4o2OSTjyKbhhw904OMM7d5ic5dSRiX7sjmlJD5a7GLiljddWxwTynsxWDy701-yi1V2gm993zj6eHt9XL9n67fl1tVxnRmAdMw24KBowRA2ZogXUNi-koZZs3ghbylIaCxKErLCUWEhAMGiqRdsUNYAVc3Z32t378TBRiGo3Tn5IX6o8l6LCuhB1ovITZfwYgqdW7b3rtT8qBPUdWJ0CqxRY_QRWMkniJIUEDxvyf9P_WF9yoIC_</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Niu, Congsu</creator><creator>Zhang, Yiwei</creator><creator>Ma, Shuai</creator><creator>Wan, Yonghua</creator><creator>Yang, Hui</creator><creator>Liu, Xiaomin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism</title><author>Niu, Congsu ; Zhang, Yiwei ; Ma, Shuai ; Wan, Yonghua ; Yang, Hui ; Liu, Xiaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a0154b0ceebec4f01ad247cefed2b3d6767cd070378167147010c1c85fb4900d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chloride</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Copper chloride</topic><topic>Degradation</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Flux density</topic><topic>Ionic liquids</topic><topic>Lithium</topic><topic>Metal chlorides</topic><topic>Metal foams</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Renewable and Green Energy</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Solid electrolytes</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Congsu</creatorcontrib><creatorcontrib>Zhang, Yiwei</creatorcontrib><creatorcontrib>Ma, Shuai</creatorcontrib><creatorcontrib>Wan, Yonghua</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Liu, Xiaomin</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Congsu</au><au>Zhang, Yiwei</au><au>Ma, Shuai</au><au>Wan, Yonghua</au><au>Yang, Hui</au><au>Liu, Xiaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>25</volume><issue>9</issue><spage>4189</spage><epage>4196</epage><pages>4189-4196</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g
−1
and the high energy density of 374.7 Wh kg
−1
. In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-019-03003-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2019-09, Vol.25 (9), p.4189-4196 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2273819439 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum oxide Batteries Cathodes Chemistry Chemistry and Materials Science Chloride Condensed Matter Physics Copper Copper chloride Degradation Electrochemistry Electrolytes Energy Storage Flux density Ionic liquids Lithium Metal chlorides Metal foams Operating temperature Optical and Electronic Materials Original Paper Renewable and Green Energy Sodium Sodium chloride Solid electrolytes Thermal management |
title | An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intermediate%20temperature%20sodium%20copper%20chloride%20battery%20using%20ionic%20liquid%20electrolyte%20and%20its%20degradation%20mechanism&rft.jtitle=Ionics&rft.au=Niu,%20Congsu&rft.date=2019-09-01&rft.volume=25&rft.issue=9&rft.spage=4189&rft.epage=4196&rft.pages=4189-4196&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-019-03003-7&rft_dat=%3Cproquest_cross%3E2273819439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273819439&rft_id=info:pmid/&rfr_iscdi=true |