An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism

Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2019-09, Vol.25 (9), p.4189-4196
Hauptverfasser: Niu, Congsu, Zhang, Yiwei, Ma, Shuai, Wan, Yonghua, Yang, Hui, Liu, Xiaomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4196
container_issue 9
container_start_page 4189
container_title Ionics
container_volume 25
creator Niu, Congsu
Zhang, Yiwei
Ma, Shuai
Wan, Yonghua
Yang, Hui
Liu, Xiaomin
description Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g −1 and the high energy density of 374.7 Wh kg −1 . In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process.
doi_str_mv 10.1007/s11581-019-03003-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273819439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273819439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a0154b0ceebec4f01ad247cefed2b3d6767cd070378167147010c1c85fb4900d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoWKt_wFXA9ei9k-lkZlmKLyi40XXIJHfalHm0SQbpvzdawZ2rwOWcL3AYu0W4RwD5EBAXFWaAdQYCQGTyjM2wKvMMZAnnbAZ1ITMJhbxkVyHsAMoSczljn8uBuyGS78k6HYlH6vfkdZw88TBaN_XcjPt04mbbjd5Z4o2OSTjyKbhhw904OMM7d5ic5dSRiX7sjmlJD5a7GLiljddWxwTynsxWDy701-yi1V2gm993zj6eHt9XL9n67fl1tVxnRmAdMw24KBowRA2ZogXUNi-koZZs3ghbylIaCxKErLCUWEhAMGiqRdsUNYAVc3Z32t378TBRiGo3Tn5IX6o8l6LCuhB1ovITZfwYgqdW7b3rtT8qBPUdWJ0CqxRY_QRWMkniJIUEDxvyf9P_WF9yoIC_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273819439</pqid></control><display><type>article</type><title>An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Niu, Congsu ; Zhang, Yiwei ; Ma, Shuai ; Wan, Yonghua ; Yang, Hui ; Liu, Xiaomin</creator><creatorcontrib>Niu, Congsu ; Zhang, Yiwei ; Ma, Shuai ; Wan, Yonghua ; Yang, Hui ; Liu, Xiaomin</creatorcontrib><description>Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g −1 and the high energy density of 374.7 Wh kg −1 . In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-019-03003-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum oxide ; Batteries ; Cathodes ; Chemistry ; Chemistry and Materials Science ; Chloride ; Condensed Matter Physics ; Copper ; Copper chloride ; Degradation ; Electrochemistry ; Electrolytes ; Energy Storage ; Flux density ; Ionic liquids ; Lithium ; Metal chlorides ; Metal foams ; Operating temperature ; Optical and Electronic Materials ; Original Paper ; Renewable and Green Energy ; Sodium ; Sodium chloride ; Solid electrolytes ; Thermal management</subject><ispartof>Ionics, 2019-09, Vol.25 (9), p.4189-4196</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a0154b0ceebec4f01ad247cefed2b3d6767cd070378167147010c1c85fb4900d3</citedby><cites>FETCH-LOGICAL-c319t-a0154b0ceebec4f01ad247cefed2b3d6767cd070378167147010c1c85fb4900d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-019-03003-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-019-03003-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Niu, Congsu</creatorcontrib><creatorcontrib>Zhang, Yiwei</creatorcontrib><creatorcontrib>Ma, Shuai</creatorcontrib><creatorcontrib>Wan, Yonghua</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Liu, Xiaomin</creatorcontrib><title>An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g −1 and the high energy density of 374.7 Wh kg −1 . In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process.</description><subject>Aluminum oxide</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chloride</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Copper chloride</subject><subject>Degradation</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Flux density</subject><subject>Ionic liquids</subject><subject>Lithium</subject><subject>Metal chlorides</subject><subject>Metal foams</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Renewable and Green Energy</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Solid electrolytes</subject><subject>Thermal management</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoWKt_wFXA9ei9k-lkZlmKLyi40XXIJHfalHm0SQbpvzdawZ2rwOWcL3AYu0W4RwD5EBAXFWaAdQYCQGTyjM2wKvMMZAnnbAZ1ITMJhbxkVyHsAMoSczljn8uBuyGS78k6HYlH6vfkdZw88TBaN_XcjPt04mbbjd5Z4o2OSTjyKbhhw904OMM7d5ic5dSRiX7sjmlJD5a7GLiljddWxwTynsxWDy701-yi1V2gm993zj6eHt9XL9n67fl1tVxnRmAdMw24KBowRA2ZogXUNi-koZZs3ghbylIaCxKErLCUWEhAMGiqRdsUNYAVc3Z32t378TBRiGo3Tn5IX6o8l6LCuhB1ovITZfwYgqdW7b3rtT8qBPUdWJ0CqxRY_QRWMkniJIUEDxvyf9P_WF9yoIC_</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Niu, Congsu</creator><creator>Zhang, Yiwei</creator><creator>Ma, Shuai</creator><creator>Wan, Yonghua</creator><creator>Yang, Hui</creator><creator>Liu, Xiaomin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism</title><author>Niu, Congsu ; Zhang, Yiwei ; Ma, Shuai ; Wan, Yonghua ; Yang, Hui ; Liu, Xiaomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a0154b0ceebec4f01ad247cefed2b3d6767cd070378167147010c1c85fb4900d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chloride</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Copper chloride</topic><topic>Degradation</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Flux density</topic><topic>Ionic liquids</topic><topic>Lithium</topic><topic>Metal chlorides</topic><topic>Metal foams</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Renewable and Green Energy</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Solid electrolytes</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Congsu</creatorcontrib><creatorcontrib>Zhang, Yiwei</creatorcontrib><creatorcontrib>Ma, Shuai</creatorcontrib><creatorcontrib>Wan, Yonghua</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Liu, Xiaomin</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Congsu</au><au>Zhang, Yiwei</au><au>Ma, Shuai</au><au>Wan, Yonghua</au><au>Yang, Hui</au><au>Liu, Xiaomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>25</volume><issue>9</issue><spage>4189</spage><epage>4196</epage><pages>4189-4196</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g −1 and the high energy density of 374.7 Wh kg −1 . In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-019-03003-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2019-09, Vol.25 (9), p.4189-4196
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2273819439
source SpringerLink Journals - AutoHoldings
subjects Aluminum oxide
Batteries
Cathodes
Chemistry
Chemistry and Materials Science
Chloride
Condensed Matter Physics
Copper
Copper chloride
Degradation
Electrochemistry
Electrolytes
Energy Storage
Flux density
Ionic liquids
Lithium
Metal chlorides
Metal foams
Operating temperature
Optical and Electronic Materials
Original Paper
Renewable and Green Energy
Sodium
Sodium chloride
Solid electrolytes
Thermal management
title An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intermediate%20temperature%20sodium%20copper%20chloride%20battery%20using%20ionic%20liquid%20electrolyte%20and%20its%20degradation%20mechanism&rft.jtitle=Ionics&rft.au=Niu,%20Congsu&rft.date=2019-09-01&rft.volume=25&rft.issue=9&rft.spage=4189&rft.epage=4196&rft.pages=4189-4196&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-019-03003-7&rft_dat=%3Cproquest_cross%3E2273819439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273819439&rft_id=info:pmid/&rfr_iscdi=true