A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells
Minimizing the interface loss of perovskite solar cells is critical to achieving high photovoltaic performance, and intensive research is underway on interfacial engineering in this regard. In this work, we introduce a ZnO nanoparticles (ZnO NPs) interlayer between phenyl-C61-butyric acid methyl est...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2019-09, Vol.801, p.277-284 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | |
container_start_page | 277 |
container_title | Journal of alloys and compounds |
container_volume | 801 |
creator | Kwon, Sung-Nam Yu, Jae-Hun Na, Seok-In |
description | Minimizing the interface loss of perovskite solar cells is critical to achieving high photovoltaic performance, and intensive research is underway on interfacial engineering in this regard. In this work, we introduce a ZnO nanoparticles (ZnO NPs) interlayer between phenyl-C61-butyric acid methyl ester (PCBM) and a metal electrode in order to reduce the interface loss due to charge recombination and device degradation, and also investigate the dependence of device performance on the thickness and morphology of the PCBM and PCBM/ZnO electron transport bilayer. After achieving optimized PCBM and ZnO thickness, the PCBM/ZnO bilayer-based devices reached an average power conversion efficiency of 15.63% (Max. 16.39%) with an open circuit voltage of 1.05 V, short circuit current density of 18.69 mA cm−2, and fill factor of 79.95%. In addition, hysteresis behavior and atmospheric stability are significantly improved by the incorporation of a PCBM/ZnO bilayer. Therefore, the implementation of a PCBM/ZnO electron transport bilayer is a promising approach toward achieving a high-efficiency PSC with stable power output (low J-V hysteresis) and durability.
[Display omitted]
•ZnO nanoparticles were introduced on the PCBM layer to reduce interfacial losses.•PCBM/ZnO bilayer reduced interface resistance and leakage current of the device.•Optimum thickness PCBM/ZnO bilayer-based PSC achieved a high PCE of 16.39%.•Hysteresis and air-stability are greatly improved by introducing PCBM/ZnO bilayer. |
doi_str_mv | 10.1016/j.jallcom.2019.06.089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273747263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819321607</els_id><sourcerecordid>2273747263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f95482f1f852293b3cbf33fec83b3e01a670affc64fc2ce62e02bd9f275721bc3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BCHgujWPadquRMQXDLjRjZuQpjdOaqapSWZg1v5xozN7V_fCPedczofQJSUlJVRcD-WgnNN-XTJC25KIkjTtEZrRpubFQoj2GM1Iy6qi4U1zis5iHAjJSk5n6PsWx11MsFbJaqymKXilVzh5_D6-4FGNflIhnxwUKkablT0GBzoFP-IU1BgnHxLurFM7CNj4gFf2Y4XBGKstjHqH1djjmFTnAE8Q_DZ-2gQ4eqcC1uBcPEcnRrkIF4c5R28P9693T8Xy5fH57nZZaM7rVJi2WjTMUNNUjLW847oznBvQTd6BUCVqoozRYmE00yAYENb1rWF1VTPaaT5HV_vcXPJrAzHJwW_CmF9KxmpeL2omeFZVe5UOPsYARk7BrlXYSUrkL285yANv-ctbEiEz7-y72fsgV9haCDL-AYDehsxL9t7-k_AD3emPjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273747263</pqid></control><display><type>article</type><title>A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kwon, Sung-Nam ; Yu, Jae-Hun ; Na, Seok-In</creator><creatorcontrib>Kwon, Sung-Nam ; Yu, Jae-Hun ; Na, Seok-In</creatorcontrib><description>Minimizing the interface loss of perovskite solar cells is critical to achieving high photovoltaic performance, and intensive research is underway on interfacial engineering in this regard. In this work, we introduce a ZnO nanoparticles (ZnO NPs) interlayer between phenyl-C61-butyric acid methyl ester (PCBM) and a metal electrode in order to reduce the interface loss due to charge recombination and device degradation, and also investigate the dependence of device performance on the thickness and morphology of the PCBM and PCBM/ZnO electron transport bilayer. After achieving optimized PCBM and ZnO thickness, the PCBM/ZnO bilayer-based devices reached an average power conversion efficiency of 15.63% (Max. 16.39%) with an open circuit voltage of 1.05 V, short circuit current density of 18.69 mA cm−2, and fill factor of 79.95%. In addition, hysteresis behavior and atmospheric stability are significantly improved by the incorporation of a PCBM/ZnO bilayer. Therefore, the implementation of a PCBM/ZnO electron transport bilayer is a promising approach toward achieving a high-efficiency PSC with stable power output (low J-V hysteresis) and durability.
[Display omitted]
•ZnO nanoparticles were introduced on the PCBM layer to reduce interfacial losses.•PCBM/ZnO bilayer reduced interface resistance and leakage current of the device.•Optimum thickness PCBM/ZnO bilayer-based PSC achieved a high PCE of 16.39%.•Hysteresis and air-stability are greatly improved by introducing PCBM/ZnO bilayer.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.06.089</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bilayers ; Butyric acid ; Circuits ; Dependence ; Efficiency ; Electron transport ; Electron transport bilayer ; Energy conversion efficiency ; High-efficiency perovskite solar cells ; Hysteresis ; Interface loss ; Interfacial engineering ; Interlayers ; Morphology ; Nanoparticles ; Open circuit voltage ; Perovskites ; Photovoltaic cells ; Short circuit currents ; Solar cells ; Stable perovskite solar cells ; Thickness ; Zinc oxide ; ZnO nanoparticles</subject><ispartof>Journal of alloys and compounds, 2019-09, Vol.801, p.277-284</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f95482f1f852293b3cbf33fec83b3e01a670affc64fc2ce62e02bd9f275721bc3</citedby><cites>FETCH-LOGICAL-c337t-f95482f1f852293b3cbf33fec83b3e01a670affc64fc2ce62e02bd9f275721bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.06.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Kwon, Sung-Nam</creatorcontrib><creatorcontrib>Yu, Jae-Hun</creatorcontrib><creatorcontrib>Na, Seok-In</creatorcontrib><title>A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells</title><title>Journal of alloys and compounds</title><description>Minimizing the interface loss of perovskite solar cells is critical to achieving high photovoltaic performance, and intensive research is underway on interfacial engineering in this regard. In this work, we introduce a ZnO nanoparticles (ZnO NPs) interlayer between phenyl-C61-butyric acid methyl ester (PCBM) and a metal electrode in order to reduce the interface loss due to charge recombination and device degradation, and also investigate the dependence of device performance on the thickness and morphology of the PCBM and PCBM/ZnO electron transport bilayer. After achieving optimized PCBM and ZnO thickness, the PCBM/ZnO bilayer-based devices reached an average power conversion efficiency of 15.63% (Max. 16.39%) with an open circuit voltage of 1.05 V, short circuit current density of 18.69 mA cm−2, and fill factor of 79.95%. In addition, hysteresis behavior and atmospheric stability are significantly improved by the incorporation of a PCBM/ZnO bilayer. Therefore, the implementation of a PCBM/ZnO electron transport bilayer is a promising approach toward achieving a high-efficiency PSC with stable power output (low J-V hysteresis) and durability.
[Display omitted]
•ZnO nanoparticles were introduced on the PCBM layer to reduce interfacial losses.•PCBM/ZnO bilayer reduced interface resistance and leakage current of the device.•Optimum thickness PCBM/ZnO bilayer-based PSC achieved a high PCE of 16.39%.•Hysteresis and air-stability are greatly improved by introducing PCBM/ZnO bilayer.</description><subject>Bilayers</subject><subject>Butyric acid</subject><subject>Circuits</subject><subject>Dependence</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Electron transport bilayer</subject><subject>Energy conversion efficiency</subject><subject>High-efficiency perovskite solar cells</subject><subject>Hysteresis</subject><subject>Interface loss</subject><subject>Interfacial engineering</subject><subject>Interlayers</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Open circuit voltage</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><subject>Stable perovskite solar cells</subject><subject>Thickness</subject><subject>Zinc oxide</subject><subject>ZnO nanoparticles</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BCHgujWPadquRMQXDLjRjZuQpjdOaqapSWZg1v5xozN7V_fCPedczofQJSUlJVRcD-WgnNN-XTJC25KIkjTtEZrRpubFQoj2GM1Iy6qi4U1zis5iHAjJSk5n6PsWx11MsFbJaqymKXilVzh5_D6-4FGNflIhnxwUKkablT0GBzoFP-IU1BgnHxLurFM7CNj4gFf2Y4XBGKstjHqH1djjmFTnAE8Q_DZ-2gQ4eqcC1uBcPEcnRrkIF4c5R28P9693T8Xy5fH57nZZaM7rVJi2WjTMUNNUjLW847oznBvQTd6BUCVqoozRYmE00yAYENb1rWF1VTPaaT5HV_vcXPJrAzHJwW_CmF9KxmpeL2omeFZVe5UOPsYARk7BrlXYSUrkL285yANv-ctbEiEz7-y72fsgV9haCDL-AYDehsxL9t7-k_AD3emPjw</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Kwon, Sung-Nam</creator><creator>Yu, Jae-Hun</creator><creator>Na, Seok-In</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190915</creationdate><title>A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells</title><author>Kwon, Sung-Nam ; Yu, Jae-Hun ; Na, Seok-In</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f95482f1f852293b3cbf33fec83b3e01a670affc64fc2ce62e02bd9f275721bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bilayers</topic><topic>Butyric acid</topic><topic>Circuits</topic><topic>Dependence</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Electron transport bilayer</topic><topic>Energy conversion efficiency</topic><topic>High-efficiency perovskite solar cells</topic><topic>Hysteresis</topic><topic>Interface loss</topic><topic>Interfacial engineering</topic><topic>Interlayers</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Open circuit voltage</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><topic>Stable perovskite solar cells</topic><topic>Thickness</topic><topic>Zinc oxide</topic><topic>ZnO nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Sung-Nam</creatorcontrib><creatorcontrib>Yu, Jae-Hun</creatorcontrib><creatorcontrib>Na, Seok-In</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Sung-Nam</au><au>Yu, Jae-Hun</au><au>Na, Seok-In</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>801</volume><spage>277</spage><epage>284</epage><pages>277-284</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Minimizing the interface loss of perovskite solar cells is critical to achieving high photovoltaic performance, and intensive research is underway on interfacial engineering in this regard. In this work, we introduce a ZnO nanoparticles (ZnO NPs) interlayer between phenyl-C61-butyric acid methyl ester (PCBM) and a metal electrode in order to reduce the interface loss due to charge recombination and device degradation, and also investigate the dependence of device performance on the thickness and morphology of the PCBM and PCBM/ZnO electron transport bilayer. After achieving optimized PCBM and ZnO thickness, the PCBM/ZnO bilayer-based devices reached an average power conversion efficiency of 15.63% (Max. 16.39%) with an open circuit voltage of 1.05 V, short circuit current density of 18.69 mA cm−2, and fill factor of 79.95%. In addition, hysteresis behavior and atmospheric stability are significantly improved by the incorporation of a PCBM/ZnO bilayer. Therefore, the implementation of a PCBM/ZnO electron transport bilayer is a promising approach toward achieving a high-efficiency PSC with stable power output (low J-V hysteresis) and durability.
[Display omitted]
•ZnO nanoparticles were introduced on the PCBM layer to reduce interfacial losses.•PCBM/ZnO bilayer reduced interface resistance and leakage current of the device.•Optimum thickness PCBM/ZnO bilayer-based PSC achieved a high PCE of 16.39%.•Hysteresis and air-stability are greatly improved by introducing PCBM/ZnO bilayer.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.06.089</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2019-09, Vol.801, p.277-284 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2273747263 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bilayers Butyric acid Circuits Dependence Efficiency Electron transport Electron transport bilayer Energy conversion efficiency High-efficiency perovskite solar cells Hysteresis Interface loss Interfacial engineering Interlayers Morphology Nanoparticles Open circuit voltage Perovskites Photovoltaic cells Short circuit currents Solar cells Stable perovskite solar cells Thickness Zinc oxide ZnO nanoparticles |
title | A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20approach%20to%20ZnO%20nanoparticle-assisted%20electron%20transport%20bilayer%20for%20high%20efficiency%20and%20stable%20perovskite%20solar%20cells&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Kwon,%20Sung-Nam&rft.date=2019-09-15&rft.volume=801&rft.spage=277&rft.epage=284&rft.pages=277-284&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.06.089&rft_dat=%3Cproquest_cross%3E2273747263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273747263&rft_id=info:pmid/&rft_els_id=S0925838819321607&rfr_iscdi=true |