Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors

With a plausible reaction mechanism, a simple and rapid, microwave-assisted chemical synthesis method has been proposed to obtain hierarchical worm-like bismuth oxide (Bi2O3) nanostructured films as an efficient and effective hydrogen (H2) gas sensors. The structural elucidation demonstrates a diffr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-09, Vol.802, p.244-251
Hauptverfasser: Shinde, Pritamkumar V., Ghule, Balaji G., Shaikh, Shoyebmohamad F., Shinde, Nanasaheb M., Sangale, Sushil S., Jadhav, V.V., Yoon, Seog-Young, Kim, Kwang Ho, Mane, Rajaram S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue
container_start_page 244
container_title Journal of alloys and compounds
container_volume 802
creator Shinde, Pritamkumar V.
Ghule, Balaji G.
Shaikh, Shoyebmohamad F.
Shinde, Nanasaheb M.
Sangale, Sushil S.
Jadhav, V.V.
Yoon, Seog-Young
Kim, Kwang Ho
Mane, Rajaram S.
description With a plausible reaction mechanism, a simple and rapid, microwave-assisted chemical synthesis method has been proposed to obtain hierarchical worm-like bismuth oxide (Bi2O3) nanostructured films as an efficient and effective hydrogen (H2) gas sensors. The structural elucidation demonstrates a diffraction peak at 27.94° for [201] directional growth with a lattice fringe distance of 0.31 nm. The Raman shift and photoelectron spectroscopy measurements, additionally, support the formation of the phase pure Bi2O3. Estimated 14.88 m2g-1 specific surface area and 10–20 nm pore-size of as-obtained Bi2O3 evidences its mesoporous character. Among various gases tested, H2 gas endows 50% sensing performance for hierarchical Bi2O3 worm-like film sensors with a considerable response of 42 s and recovery of 83 s for 100 ppm H2 gas concentration at room-temperature, suggesting an importance of proposed method in obtaining the phase pure Bi2O3 film sensors. The H2 gas sensing mechanism has been proposed on X-ray photoelectron spectroscopy results. Finally, an influence of a relative humidity on the Bi2O3 film sensor has demonstrated 32% response at 20% RH with response/recovery time of just 7/10 s, owing to its unique surface architecture, high surface area and mesoporous nature. •Bi2O3 has been prepared by Microwave-assisted simple and ultrafast chemical method.•The Bi2O3 obtained hierarchical worm-like morphology and tetragonal nano-structure.•Bi2O3 film sensor reveals 50% response for 100 ppm H2 gas at room-temperature.•In additional, quick response/recovery time (7/10 s) for humidity sensing of Bi2O3.•The Bi2O3 sensor results are the potential of industrial commercialization benefits.
doi_str_mv 10.1016/j.jallcom.2019.06.182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273747118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819322662</els_id><sourcerecordid>2273747118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-bf7bcffe7fa86bae695e1a54461c0a8d430caaeb0edf44f0929cfab6316d0b73</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUiWWCfYceIkK4QQLwnEhr3lOOPWIYmLJ2np3-Oq7FnN4j5G9xByzVnKGZe3Xdrpvjd-SDPG65TJlFfZCVnwqhRJLmV9ShaszoqkElV1Ti4QO8aiU_AFmd-dCX6nt5BoRIcTtHTtIOhg1s7onjYOh3laU__jWqA7H4akd19ARz16nMJspjnEjHX9gFQjDd4PyQTDJnYcJLret8GvYKSrqCKM6ANekjOre4Srv7skn0-Pnw8vydvH8-vD_VtihCinpLFlY6yF0upKNhpkXQDXRZ5Lbpiu2lwwozU0DFqb5zZurI3VjRRctqwpxZLcHGs3wX_PgJPq_BzG-FFlWSnKvOS8iq7i6IogEANYtQlu0GGvOFMHwKpTf4DVAbBiUkXAMXd3zEFcsI3MFBoHo4HWBTCTar37p-EXaaWLvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273747118</pqid></control><display><type>article</type><title>Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shinde, Pritamkumar V. ; Ghule, Balaji G. ; Shaikh, Shoyebmohamad F. ; Shinde, Nanasaheb M. ; Sangale, Sushil S. ; Jadhav, V.V. ; Yoon, Seog-Young ; Kim, Kwang Ho ; Mane, Rajaram S.</creator><creatorcontrib>Shinde, Pritamkumar V. ; Ghule, Balaji G. ; Shaikh, Shoyebmohamad F. ; Shinde, Nanasaheb M. ; Sangale, Sushil S. ; Jadhav, V.V. ; Yoon, Seog-Young ; Kim, Kwang Ho ; Mane, Rajaram S.</creatorcontrib><description>With a plausible reaction mechanism, a simple and rapid, microwave-assisted chemical synthesis method has been proposed to obtain hierarchical worm-like bismuth oxide (Bi2O3) nanostructured films as an efficient and effective hydrogen (H2) gas sensors. The structural elucidation demonstrates a diffraction peak at 27.94° for [201] directional growth with a lattice fringe distance of 0.31 nm. The Raman shift and photoelectron spectroscopy measurements, additionally, support the formation of the phase pure Bi2O3. Estimated 14.88 m2g-1 specific surface area and 10–20 nm pore-size of as-obtained Bi2O3 evidences its mesoporous character. Among various gases tested, H2 gas endows 50% sensing performance for hierarchical Bi2O3 worm-like film sensors with a considerable response of 42 s and recovery of 83 s for 100 ppm H2 gas concentration at room-temperature, suggesting an importance of proposed method in obtaining the phase pure Bi2O3 film sensors. The H2 gas sensing mechanism has been proposed on X-ray photoelectron spectroscopy results. Finally, an influence of a relative humidity on the Bi2O3 film sensor has demonstrated 32% response at 20% RH with response/recovery time of just 7/10 s, owing to its unique surface architecture, high surface area and mesoporous nature. •Bi2O3 has been prepared by Microwave-assisted simple and ultrafast chemical method.•The Bi2O3 obtained hierarchical worm-like morphology and tetragonal nano-structure.•Bi2O3 film sensor reveals 50% response for 100 ppm H2 gas at room-temperature.•In additional, quick response/recovery time (7/10 s) for humidity sensing of Bi2O3.•The Bi2O3 sensor results are the potential of industrial commercialization benefits.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.06.182</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bismuth oxides ; Bismuth trioxide ; Chemical synthesis ; Gas sensors ; Gases ; Hierarchical worm nanostructured films ; Hydrogen gas sensors ; Microwave-assisted Bi2O3 ; Nanostructure ; Organic chemistry ; Photoelectron spectroscopy ; Photoelectrons ; Reaction mechanisms ; Recovery time ; Relative humidity ; Room temperature ; Sensors ; Spectrum analysis ; Surface area</subject><ispartof>Journal of alloys and compounds, 2019-09, Vol.802, p.244-251</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Sep 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-bf7bcffe7fa86bae695e1a54461c0a8d430caaeb0edf44f0929cfab6316d0b73</citedby><cites>FETCH-LOGICAL-c337t-bf7bcffe7fa86bae695e1a54461c0a8d430caaeb0edf44f0929cfab6316d0b73</cites><orcidid>0000-0002-2137-324X ; 0000-0002-2960-6431 ; 0000-0002-4746-0296 ; 0000-0002-2061-6852 ; 0000-0002-9624-7985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.06.182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shinde, Pritamkumar V.</creatorcontrib><creatorcontrib>Ghule, Balaji G.</creatorcontrib><creatorcontrib>Shaikh, Shoyebmohamad F.</creatorcontrib><creatorcontrib>Shinde, Nanasaheb M.</creatorcontrib><creatorcontrib>Sangale, Sushil S.</creatorcontrib><creatorcontrib>Jadhav, V.V.</creatorcontrib><creatorcontrib>Yoon, Seog-Young</creatorcontrib><creatorcontrib>Kim, Kwang Ho</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><title>Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors</title><title>Journal of alloys and compounds</title><description>With a plausible reaction mechanism, a simple and rapid, microwave-assisted chemical synthesis method has been proposed to obtain hierarchical worm-like bismuth oxide (Bi2O3) nanostructured films as an efficient and effective hydrogen (H2) gas sensors. The structural elucidation demonstrates a diffraction peak at 27.94° for [201] directional growth with a lattice fringe distance of 0.31 nm. The Raman shift and photoelectron spectroscopy measurements, additionally, support the formation of the phase pure Bi2O3. Estimated 14.88 m2g-1 specific surface area and 10–20 nm pore-size of as-obtained Bi2O3 evidences its mesoporous character. Among various gases tested, H2 gas endows 50% sensing performance for hierarchical Bi2O3 worm-like film sensors with a considerable response of 42 s and recovery of 83 s for 100 ppm H2 gas concentration at room-temperature, suggesting an importance of proposed method in obtaining the phase pure Bi2O3 film sensors. The H2 gas sensing mechanism has been proposed on X-ray photoelectron spectroscopy results. Finally, an influence of a relative humidity on the Bi2O3 film sensor has demonstrated 32% response at 20% RH with response/recovery time of just 7/10 s, owing to its unique surface architecture, high surface area and mesoporous nature. •Bi2O3 has been prepared by Microwave-assisted simple and ultrafast chemical method.•The Bi2O3 obtained hierarchical worm-like morphology and tetragonal nano-structure.•Bi2O3 film sensor reveals 50% response for 100 ppm H2 gas at room-temperature.•In additional, quick response/recovery time (7/10 s) for humidity sensing of Bi2O3.•The Bi2O3 sensor results are the potential of industrial commercialization benefits.</description><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>Chemical synthesis</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Hierarchical worm nanostructured films</subject><subject>Hydrogen gas sensors</subject><subject>Microwave-assisted Bi2O3</subject><subject>Nanostructure</subject><subject>Organic chemistry</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Reaction mechanisms</subject><subject>Recovery time</subject><subject>Relative humidity</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Surface area</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUiWWCfYceIkK4QQLwnEhr3lOOPWIYmLJ2np3-Oq7FnN4j5G9xByzVnKGZe3Xdrpvjd-SDPG65TJlFfZCVnwqhRJLmV9ShaszoqkElV1Ti4QO8aiU_AFmd-dCX6nt5BoRIcTtHTtIOhg1s7onjYOh3laU__jWqA7H4akd19ARz16nMJspjnEjHX9gFQjDd4PyQTDJnYcJLret8GvYKSrqCKM6ANekjOre4Srv7skn0-Pnw8vydvH8-vD_VtihCinpLFlY6yF0upKNhpkXQDXRZ5Lbpiu2lwwozU0DFqb5zZurI3VjRRctqwpxZLcHGs3wX_PgJPq_BzG-FFlWSnKvOS8iq7i6IogEANYtQlu0GGvOFMHwKpTf4DVAbBiUkXAMXd3zEFcsI3MFBoHo4HWBTCTar37p-EXaaWLvg</recordid><startdate>20190925</startdate><enddate>20190925</enddate><creator>Shinde, Pritamkumar V.</creator><creator>Ghule, Balaji G.</creator><creator>Shaikh, Shoyebmohamad F.</creator><creator>Shinde, Nanasaheb M.</creator><creator>Sangale, Sushil S.</creator><creator>Jadhav, V.V.</creator><creator>Yoon, Seog-Young</creator><creator>Kim, Kwang Ho</creator><creator>Mane, Rajaram S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2137-324X</orcidid><orcidid>https://orcid.org/0000-0002-2960-6431</orcidid><orcidid>https://orcid.org/0000-0002-4746-0296</orcidid><orcidid>https://orcid.org/0000-0002-2061-6852</orcidid><orcidid>https://orcid.org/0000-0002-9624-7985</orcidid></search><sort><creationdate>20190925</creationdate><title>Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors</title><author>Shinde, Pritamkumar V. ; Ghule, Balaji G. ; Shaikh, Shoyebmohamad F. ; Shinde, Nanasaheb M. ; Sangale, Sushil S. ; Jadhav, V.V. ; Yoon, Seog-Young ; Kim, Kwang Ho ; Mane, Rajaram S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-bf7bcffe7fa86bae695e1a54461c0a8d430caaeb0edf44f0929cfab6316d0b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>Chemical synthesis</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Hierarchical worm nanostructured films</topic><topic>Hydrogen gas sensors</topic><topic>Microwave-assisted Bi2O3</topic><topic>Nanostructure</topic><topic>Organic chemistry</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Reaction mechanisms</topic><topic>Recovery time</topic><topic>Relative humidity</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinde, Pritamkumar V.</creatorcontrib><creatorcontrib>Ghule, Balaji G.</creatorcontrib><creatorcontrib>Shaikh, Shoyebmohamad F.</creatorcontrib><creatorcontrib>Shinde, Nanasaheb M.</creatorcontrib><creatorcontrib>Sangale, Sushil S.</creatorcontrib><creatorcontrib>Jadhav, V.V.</creatorcontrib><creatorcontrib>Yoon, Seog-Young</creatorcontrib><creatorcontrib>Kim, Kwang Ho</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shinde, Pritamkumar V.</au><au>Ghule, Balaji G.</au><au>Shaikh, Shoyebmohamad F.</au><au>Shinde, Nanasaheb M.</au><au>Sangale, Sushil S.</au><au>Jadhav, V.V.</au><au>Yoon, Seog-Young</au><au>Kim, Kwang Ho</au><au>Mane, Rajaram S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-09-25</date><risdate>2019</risdate><volume>802</volume><spage>244</spage><epage>251</epage><pages>244-251</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>With a plausible reaction mechanism, a simple and rapid, microwave-assisted chemical synthesis method has been proposed to obtain hierarchical worm-like bismuth oxide (Bi2O3) nanostructured films as an efficient and effective hydrogen (H2) gas sensors. The structural elucidation demonstrates a diffraction peak at 27.94° for [201] directional growth with a lattice fringe distance of 0.31 nm. The Raman shift and photoelectron spectroscopy measurements, additionally, support the formation of the phase pure Bi2O3. Estimated 14.88 m2g-1 specific surface area and 10–20 nm pore-size of as-obtained Bi2O3 evidences its mesoporous character. Among various gases tested, H2 gas endows 50% sensing performance for hierarchical Bi2O3 worm-like film sensors with a considerable response of 42 s and recovery of 83 s for 100 ppm H2 gas concentration at room-temperature, suggesting an importance of proposed method in obtaining the phase pure Bi2O3 film sensors. The H2 gas sensing mechanism has been proposed on X-ray photoelectron spectroscopy results. Finally, an influence of a relative humidity on the Bi2O3 film sensor has demonstrated 32% response at 20% RH with response/recovery time of just 7/10 s, owing to its unique surface architecture, high surface area and mesoporous nature. •Bi2O3 has been prepared by Microwave-assisted simple and ultrafast chemical method.•The Bi2O3 obtained hierarchical worm-like morphology and tetragonal nano-structure.•Bi2O3 film sensor reveals 50% response for 100 ppm H2 gas at room-temperature.•In additional, quick response/recovery time (7/10 s) for humidity sensing of Bi2O3.•The Bi2O3 sensor results are the potential of industrial commercialization benefits.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.06.182</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2137-324X</orcidid><orcidid>https://orcid.org/0000-0002-2960-6431</orcidid><orcidid>https://orcid.org/0000-0002-4746-0296</orcidid><orcidid>https://orcid.org/0000-0002-2061-6852</orcidid><orcidid>https://orcid.org/0000-0002-9624-7985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-09, Vol.802, p.244-251
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2273747118
source Elsevier ScienceDirect Journals Complete
subjects Bismuth oxides
Bismuth trioxide
Chemical synthesis
Gas sensors
Gases
Hierarchical worm nanostructured films
Hydrogen gas sensors
Microwave-assisted Bi2O3
Nanostructure
Organic chemistry
Photoelectron spectroscopy
Photoelectrons
Reaction mechanisms
Recovery time
Relative humidity
Room temperature
Sensors
Spectrum analysis
Surface area
title Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave-assisted%20hierarchical%20bismuth%20oxide%20worm-like%20nanostructured%20films%20as%20room-temperature%20hydrogen%20gas%20sensors&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Shinde,%20Pritamkumar%20V.&rft.date=2019-09-25&rft.volume=802&rft.spage=244&rft.epage=251&rft.pages=244-251&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.06.182&rft_dat=%3Cproquest_cross%3E2273747118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273747118&rft_id=info:pmid/&rft_els_id=S0925838819322662&rfr_iscdi=true