G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3

Any minimal Del Pezzo G -surface S of degree smaller than 3 is G -birationally rigid. We classify those which are G -birationally superrigid, and for those which fail to be so, we describe the equations of a set of generators for the infinite group Bir G ( S ) of G -birational automorphisms.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mathematics 2019-09, Vol.5 (3), p.798-827
Hauptverfasser: das Dores, Lucas, Mauri, Mirko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 3
container_start_page 798
container_title European journal of mathematics
container_volume 5
creator das Dores, Lucas
Mauri, Mirko
description Any minimal Del Pezzo G -surface S of degree smaller than 3 is G -birationally rigid. We classify those which are G -birationally superrigid, and for those which fail to be so, we describe the equations of a set of generators for the infinite group Bir G ( S ) of G -birational automorphisms.
doi_str_mv 10.1007/s40879-018-0298-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273332702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273332702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-79f6fcee7b1114bcf866efa28c9ae91632a25e0be7ed8e61f6741d4d1887d663</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWLQfwFvAczSTbPPnqFWrUNBDD95CdjMpkdqtyRbafnq3rOjJ0wwz7z0eP0KugN8A5_q2VNxoyzgYxoU1bHdCRgKsZUorc_q7T97PybiUVHMJQkkJ1Yjcz1idsu9Su_YrWrYbzDktU0jdnraRPuCKvuHh0PavHH2D5XgNuMyIVFC_DlRekrPoVwXHP_OCLJ4eF9NnNn-dvUzv5qyRE9sxbaOKDaKuAaCqm2iUwuiFaaxHC0oKLybIa9QYDCqISlcQqgDG6KCUvCDXQ-wmt19bLJ37aLe5b12cEFpKKTQXvQoGVZPbUjJGt8np0-e9A-6OsNwAy_Ww3BGW2_UeMXhKr10vMf8l_2_6Bo00bDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273332702</pqid></control><display><type>article</type><title>G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3</title><source>SpringerLink Journals - AutoHoldings</source><creator>das Dores, Lucas ; Mauri, Mirko</creator><creatorcontrib>das Dores, Lucas ; Mauri, Mirko</creatorcontrib><description>Any minimal Del Pezzo G -surface S of degree smaller than 3 is G -birationally rigid. We classify those which are G -birationally superrigid, and for those which fail to be so, we describe the equations of a set of generators for the infinite group Bir G ( S ) of G -birational automorphisms.</description><identifier>ISSN: 2199-675X</identifier><identifier>EISSN: 2199-6768</identifier><identifier>DOI: 10.1007/s40879-018-0298-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebraic Geometry ; Automorphisms ; Mathematics ; Mathematics and Statistics ; Research Article</subject><ispartof>European journal of mathematics, 2019-09, Vol.5 (3), p.798-827</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-79f6fcee7b1114bcf866efa28c9ae91632a25e0be7ed8e61f6741d4d1887d663</citedby><cites>FETCH-LOGICAL-c359t-79f6fcee7b1114bcf866efa28c9ae91632a25e0be7ed8e61f6741d4d1887d663</cites><orcidid>0000-0002-1570-2078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40879-018-0298-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40879-018-0298-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>das Dores, Lucas</creatorcontrib><creatorcontrib>Mauri, Mirko</creatorcontrib><title>G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3</title><title>European journal of mathematics</title><addtitle>European Journal of Mathematics</addtitle><description>Any minimal Del Pezzo G -surface S of degree smaller than 3 is G -birationally rigid. We classify those which are G -birationally superrigid, and for those which fail to be so, we describe the equations of a set of generators for the infinite group Bir G ( S ) of G -birational automorphisms.</description><subject>Algebraic Geometry</subject><subject>Automorphisms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><issn>2199-675X</issn><issn>2199-6768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE9LAzEQxYMoWLQfwFvAczSTbPPnqFWrUNBDD95CdjMpkdqtyRbafnq3rOjJ0wwz7z0eP0KugN8A5_q2VNxoyzgYxoU1bHdCRgKsZUorc_q7T97PybiUVHMJQkkJ1Yjcz1idsu9Su_YrWrYbzDktU0jdnraRPuCKvuHh0PavHH2D5XgNuMyIVFC_DlRekrPoVwXHP_OCLJ4eF9NnNn-dvUzv5qyRE9sxbaOKDaKuAaCqm2iUwuiFaaxHC0oKLybIa9QYDCqISlcQqgDG6KCUvCDXQ-wmt19bLJ37aLe5b12cEFpKKTQXvQoGVZPbUjJGt8np0-e9A-6OsNwAy_Ww3BGW2_UeMXhKr10vMf8l_2_6Bo00bDU</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>das Dores, Lucas</creator><creator>Mauri, Mirko</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1570-2078</orcidid></search><sort><creationdate>20190915</creationdate><title>G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3</title><author>das Dores, Lucas ; Mauri, Mirko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-79f6fcee7b1114bcf866efa28c9ae91632a25e0be7ed8e61f6741d4d1887d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Geometry</topic><topic>Automorphisms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><toplevel>online_resources</toplevel><creatorcontrib>das Dores, Lucas</creatorcontrib><creatorcontrib>Mauri, Mirko</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>das Dores, Lucas</au><au>Mauri, Mirko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3</atitle><jtitle>European journal of mathematics</jtitle><stitle>European Journal of Mathematics</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>5</volume><issue>3</issue><spage>798</spage><epage>827</epage><pages>798-827</pages><issn>2199-675X</issn><eissn>2199-6768</eissn><abstract>Any minimal Del Pezzo G -surface S of degree smaller than 3 is G -birationally rigid. We classify those which are G -birationally superrigid, and for those which fail to be so, we describe the equations of a set of generators for the infinite group Bir G ( S ) of G -birational automorphisms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40879-018-0298-x</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-1570-2078</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-675X
ispartof European journal of mathematics, 2019-09, Vol.5 (3), p.798-827
issn 2199-675X
2199-6768
language eng
recordid cdi_proquest_journals_2273332702
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Automorphisms
Mathematics
Mathematics and Statistics
Research Article
title G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G-birational%20superrigidity%20of%20Del%20Pezzo%20surfaces%20of%20degree%202%20and%203&rft.jtitle=European%20journal%20of%20mathematics&rft.au=das%20Dores,%20Lucas&rft.date=2019-09-15&rft.volume=5&rft.issue=3&rft.spage=798&rft.epage=827&rft.pages=798-827&rft.issn=2199-675X&rft.eissn=2199-6768&rft_id=info:doi/10.1007/s40879-018-0298-x&rft_dat=%3Cproquest_cross%3E2273332702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273332702&rft_id=info:pmid/&rfr_iscdi=true