Optimizing an Environmental Observatory Network Design Using Publicly Available Data

There is a need to optimize resources for large‐scale environmental monitoring efforts, especially in developing countries. We tested a flexible framework to optimize the design (i.e., selection of study sites) of an environmental observatory network (EON) using publicly available data for Mexico. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Biogeosciences 2019-07, Vol.124 (7), p.1812-1826
Hauptverfasser: Villarreal, Samuel, Guevara, Mario, Alcaraz‐Segura, Domingo, Vargas, Rodrigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a need to optimize resources for large‐scale environmental monitoring efforts, especially in developing countries. We tested a flexible framework to optimize the design (i.e., selection of study sites) of an environmental observatory network (EON) using publicly available data for Mexico. This country represents a challenge for designing EONs because of its megadiversity and large climate and ecological heterogeneity. We address three pervasive challenges for designing EONs: (1) How to characterize and delineate ecologically similar areas, (2) how to set geographic priorities to establish new representative study sites, and (3) how to assess the representativeness of current and potential new study sites. We used unsupervised cluster analysis to spatially delineate ecologically similar sampling domains. We identified the most representative sites within each domain using a conditioned Latin Hypercube‐sampling strategy. Finally, we demonstrated the applicability of this approach by assessing the spatial representativeness of the eddy covariance network in Mexico (i.e., MexFlux). At least 84 distributed sampling sites are needed to represent >45% of the spatial heterogeneity of gross primary productivity (GPP) dynamics (i.e., GPP_mean and GPP_cv) and evapotranspiration (ET) dynamics (i.e., ET_mean and ET_cv) at the national level. The current array of MexFlux only represents 3% of GPP and 5% of ET dynamics spatial variability at the national‐level, while the same number of sites organized under an optimal framework nearly doubled these estimates. Our framework is based on a data‐driven approach and publicly available sources of information, so it could be applied anywhere in the world. Resumen Existe la necesidad de optimizar recursos para realizar esfuerzos de monitoreo ambiental a gran escala, especialmente en los países en vías de desarrollo. Probamos un protocolo flexible para optimizar el diseño (i.e., la selección de sitios de estudio) de una red de observatorios ambientales (ROA) utilizando datos disponibles públicamente para México. Este país representa un reto para el diseño de ROAs debido a su megadiversidad y gran heterogeneidad climática y ecológica. Abordamos tres retos generalizados para diseñar ROAs: 1) Cómo caracterizar y delinear áreas ecológicamente similares; 2) Cómo establecer prioridades geográficas para establecer nuevos sitios de estudio representativos; y 3) Cómo evaluar la representatividad de sitios de estudio actuales y nu
ISSN:2169-8953
2169-8961
DOI:10.1029/2018JG004714