Effects of the electrostatic environment on superlattice Majorana nanowires

Finding ways of creating, measuring, and manipulating Majorana bound states (MBSs) in superconducting-semiconducting nanowires is a highly pursued goal in condensed matter physics. It was recently proposed that a periodic covering of the semiconducting nanowire with superconductor fingers would allo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-07, Vol.100 (4), p.045301, Article 045301
Hauptverfasser: Escribano, Samuel D., Levy Yeyati, Alfredo, Oreg, Yuval, Prada, Elsa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 045301
container_title Physical review. B
container_volume 100
creator Escribano, Samuel D.
Levy Yeyati, Alfredo
Oreg, Yuval
Prada, Elsa
description Finding ways of creating, measuring, and manipulating Majorana bound states (MBSs) in superconducting-semiconducting nanowires is a highly pursued goal in condensed matter physics. It was recently proposed that a periodic covering of the semiconducting nanowire with superconductor fingers would allow both gating and tuning the system into a topological phase while leaving room for a local detection of the MBS wave function. We perform a detailed, self-consistent numerical study of a three-dimensional (3D) model for a finite-length nanowire with a superconductor superlattice including the effect of the surrounding electrostatic environment, and taking into account the surface charge created at the semiconductor surface. We consider different experimental scenarios where the superlattice is on top or at the bottom of the nanowire with respect to a back gate. The analysis of the 3D electrostatic profile, the charge density, the low-energy spectrum, and the formation of MBSs reveals a rich phenomenology that depends on the nanowire parameters as well as on the superlattice dimensions and the external back-gate potential. The 3D environment turns out to be essential to correctly capture and understand the phase diagram of the system and the parameter regions where topological superconductivity is established.
doi_str_mv 10.1103/PhysRevB.100.045301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273189700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273189700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-813d5fcab3a94b2fe9cd598f0b56a270150aaf7e611996a7ecad42e6f31401fd3</originalsourceid><addsrcrecordid>eNo9kMtOQjEQhhujiQR5AjdNXB-cnp4LXSrBS8RojK6boWcaDoEW24Lh7a1BXc3tz8z8H2OXAsZCgLx-XR7iG-1vxwJgDFUtQZywQVk1qlCqUaf_eQ3nbBTjCgBEA6oFNWBPM2vJpMi95WlJnNa5Cj4mTL3h5PZ98G5DLnHveNxtKawx5RHxZ1z5gA65Q-e_-kDxgp1ZXEca_cYh-7ibvU8fivnL_eP0Zl4YWclUTITsamtwIVFVi9KSMl2tJhYWdYNlC6IGRNtSI0T-H1sy2FUlNVaKCoTt5JBdHfdug__cUUx65XfB5ZO6LFspJtkaZJU8qky2EwNZvQ39BsNBC9A_4PQfuNwAfQQnvwG9AGPT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273189700</pqid></control><display><type>article</type><title>Effects of the electrostatic environment on superlattice Majorana nanowires</title><source>American Physical Society Journals</source><creator>Escribano, Samuel D. ; Levy Yeyati, Alfredo ; Oreg, Yuval ; Prada, Elsa</creator><creatorcontrib>Escribano, Samuel D. ; Levy Yeyati, Alfredo ; Oreg, Yuval ; Prada, Elsa</creatorcontrib><description>Finding ways of creating, measuring, and manipulating Majorana bound states (MBSs) in superconducting-semiconducting nanowires is a highly pursued goal in condensed matter physics. It was recently proposed that a periodic covering of the semiconducting nanowire with superconductor fingers would allow both gating and tuning the system into a topological phase while leaving room for a local detection of the MBS wave function. We perform a detailed, self-consistent numerical study of a three-dimensional (3D) model for a finite-length nanowire with a superconductor superlattice including the effect of the surrounding electrostatic environment, and taking into account the surface charge created at the semiconductor surface. We consider different experimental scenarios where the superlattice is on top or at the bottom of the nanowire with respect to a back gate. The analysis of the 3D electrostatic profile, the charge density, the low-energy spectrum, and the formation of MBSs reveals a rich phenomenology that depends on the nanowire parameters as well as on the superlattice dimensions and the external back-gate potential. The 3D environment turns out to be essential to correctly capture and understand the phase diagram of the system and the parameter regions where topological superconductivity is established.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.045301</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Charge density ; Condensed matter physics ; Energy spectra ; Nanowires ; Parameters ; Phase diagrams ; Phenomenology ; Superconductivity ; Superlattices ; Surface charge ; Three dimensional models ; Topology</subject><ispartof>Physical review. B, 2019-07, Vol.100 (4), p.045301, Article 045301</ispartof><rights>Copyright American Physical Society Jul 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-813d5fcab3a94b2fe9cd598f0b56a270150aaf7e611996a7ecad42e6f31401fd3</citedby><cites>FETCH-LOGICAL-c343t-813d5fcab3a94b2fe9cd598f0b56a270150aaf7e611996a7ecad42e6f31401fd3</cites><orcidid>0000-0001-7522-4795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Escribano, Samuel D.</creatorcontrib><creatorcontrib>Levy Yeyati, Alfredo</creatorcontrib><creatorcontrib>Oreg, Yuval</creatorcontrib><creatorcontrib>Prada, Elsa</creatorcontrib><title>Effects of the electrostatic environment on superlattice Majorana nanowires</title><title>Physical review. B</title><description>Finding ways of creating, measuring, and manipulating Majorana bound states (MBSs) in superconducting-semiconducting nanowires is a highly pursued goal in condensed matter physics. It was recently proposed that a periodic covering of the semiconducting nanowire with superconductor fingers would allow both gating and tuning the system into a topological phase while leaving room for a local detection of the MBS wave function. We perform a detailed, self-consistent numerical study of a three-dimensional (3D) model for a finite-length nanowire with a superconductor superlattice including the effect of the surrounding electrostatic environment, and taking into account the surface charge created at the semiconductor surface. We consider different experimental scenarios where the superlattice is on top or at the bottom of the nanowire with respect to a back gate. The analysis of the 3D electrostatic profile, the charge density, the low-energy spectrum, and the formation of MBSs reveals a rich phenomenology that depends on the nanowire parameters as well as on the superlattice dimensions and the external back-gate potential. The 3D environment turns out to be essential to correctly capture and understand the phase diagram of the system and the parameter regions where topological superconductivity is established.</description><subject>Charge density</subject><subject>Condensed matter physics</subject><subject>Energy spectra</subject><subject>Nanowires</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Phenomenology</subject><subject>Superconductivity</subject><subject>Superlattices</subject><subject>Surface charge</subject><subject>Three dimensional models</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOQjEQhhujiQR5AjdNXB-cnp4LXSrBS8RojK6boWcaDoEW24Lh7a1BXc3tz8z8H2OXAsZCgLx-XR7iG-1vxwJgDFUtQZywQVk1qlCqUaf_eQ3nbBTjCgBEA6oFNWBPM2vJpMi95WlJnNa5Cj4mTL3h5PZ98G5DLnHveNxtKawx5RHxZ1z5gA65Q-e_-kDxgp1ZXEca_cYh-7ibvU8fivnL_eP0Zl4YWclUTITsamtwIVFVi9KSMl2tJhYWdYNlC6IGRNtSI0T-H1sy2FUlNVaKCoTt5JBdHfdug__cUUx65XfB5ZO6LFspJtkaZJU8qky2EwNZvQ39BsNBC9A_4PQfuNwAfQQnvwG9AGPT</recordid><startdate>20190702</startdate><enddate>20190702</enddate><creator>Escribano, Samuel D.</creator><creator>Levy Yeyati, Alfredo</creator><creator>Oreg, Yuval</creator><creator>Prada, Elsa</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7522-4795</orcidid></search><sort><creationdate>20190702</creationdate><title>Effects of the electrostatic environment on superlattice Majorana nanowires</title><author>Escribano, Samuel D. ; Levy Yeyati, Alfredo ; Oreg, Yuval ; Prada, Elsa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-813d5fcab3a94b2fe9cd598f0b56a270150aaf7e611996a7ecad42e6f31401fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge density</topic><topic>Condensed matter physics</topic><topic>Energy spectra</topic><topic>Nanowires</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Phenomenology</topic><topic>Superconductivity</topic><topic>Superlattices</topic><topic>Surface charge</topic><topic>Three dimensional models</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escribano, Samuel D.</creatorcontrib><creatorcontrib>Levy Yeyati, Alfredo</creatorcontrib><creatorcontrib>Oreg, Yuval</creatorcontrib><creatorcontrib>Prada, Elsa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escribano, Samuel D.</au><au>Levy Yeyati, Alfredo</au><au>Oreg, Yuval</au><au>Prada, Elsa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of the electrostatic environment on superlattice Majorana nanowires</atitle><jtitle>Physical review. B</jtitle><date>2019-07-02</date><risdate>2019</risdate><volume>100</volume><issue>4</issue><spage>045301</spage><pages>045301-</pages><artnum>045301</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Finding ways of creating, measuring, and manipulating Majorana bound states (MBSs) in superconducting-semiconducting nanowires is a highly pursued goal in condensed matter physics. It was recently proposed that a periodic covering of the semiconducting nanowire with superconductor fingers would allow both gating and tuning the system into a topological phase while leaving room for a local detection of the MBS wave function. We perform a detailed, self-consistent numerical study of a three-dimensional (3D) model for a finite-length nanowire with a superconductor superlattice including the effect of the surrounding electrostatic environment, and taking into account the surface charge created at the semiconductor surface. We consider different experimental scenarios where the superlattice is on top or at the bottom of the nanowire with respect to a back gate. The analysis of the 3D electrostatic profile, the charge density, the low-energy spectrum, and the formation of MBSs reveals a rich phenomenology that depends on the nanowire parameters as well as on the superlattice dimensions and the external back-gate potential. The 3D environment turns out to be essential to correctly capture and understand the phase diagram of the system and the parameter regions where topological superconductivity is established.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.045301</doi><orcidid>https://orcid.org/0000-0001-7522-4795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-07, Vol.100 (4), p.045301, Article 045301
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2273189700
source American Physical Society Journals
subjects Charge density
Condensed matter physics
Energy spectra
Nanowires
Parameters
Phase diagrams
Phenomenology
Superconductivity
Superlattices
Surface charge
Three dimensional models
Topology
title Effects of the electrostatic environment on superlattice Majorana nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20the%20electrostatic%20environment%20on%20superlattice%20Majorana%20nanowires&rft.jtitle=Physical%20review.%20B&rft.au=Escribano,%20Samuel%20D.&rft.date=2019-07-02&rft.volume=100&rft.issue=4&rft.spage=045301&rft.pages=045301-&rft.artnum=045301&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.045301&rft_dat=%3Cproquest_cross%3E2273189700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273189700&rft_id=info:pmid/&rfr_iscdi=true