Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities
[Display omitted] Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic cata...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2019-08, Vol.94, p.627-643 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 643 |
---|---|
container_issue | |
container_start_page | 627 |
container_title | Acta biomaterialia |
container_volume | 94 |
creator | Li, Xue Qi, Manlin Sun, Xiaolin Weir, Michael D. Tay, Franklin R. Oates, Thomas W. Dong, Biao Zhou, Yanmin Wang, Lin Xu, Hockin H.K. |
description | [Display omitted]
Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, the authors developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium (Ti) surfaces to enhance their antibacterial and anti-inflammatory properties. The objectives of the study were to: (1) develop novel Ti surfaces modified with different shapes of nano-CeO2 (nanorod, nanocube and nano-octahedron) for peri-implantitis prevention; (2) investigate and compare the inhibition efficacy of different shapes of CeO2-modified surfaces against biofilms of peri-implantitis-related pathogens; and (3) evaluate the different CeO2-modified surfaces on cell inflammatory response in vitro and in vivo. The results showed that nanorod CeO2-modified Ti had more bacteria attachment of Streptococcus sanguinis in the early stage, compared with other CeO2-modified Ti (p 0.1). Nanocube and nano-octahedron CeO2-modified Ti exerted much better anti-inflammatory effects and ROS-scavenging ability than nanorod CeO2in vitro (p |
doi_str_mv | 10.1016/j.actbio.2019.06.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273189608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706119304349</els_id><sourcerecordid>2273189608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-b389e36a50f256d576e5a3704cd3797949e23f7ac3a792f80ab3a139b9883f7d3</originalsourceid><addsrcrecordid>eNp9kE1L5TAUhoMo6qj_QKTgujUfbT42wiCjMyC4UNfhND2FXNrmmqSC_97cuY7LIYskL885J3kIuWS0YZTJm00DLvc-NJwy01DZUC4OyCnTSteqk_qwnFXLa0UlOyE_UtpQKjTj-picCMbLYuyUrM9rHMFhlSNCnnHJqQpLlX2Gxa9z5eftBLvw3UO1wBJSjqvLa8ShchhLOIZYFcL35Tm7YCq34W9S-2WcYJ4hh_hROdhC7yefPaZzcjTClPDiaz8jr_e_Xu5-149PD3_ufj7WrjUi173QBoWEjo68k0OnJHYgFG3dIJRRpjXIxajACVCGj5pCL4AJ0xutSz6IM3K977uN4W3FlO0mrHEpIy3nSjBtJNWFaveUiyGliKPdRj9D_LCM2p1ru7F713bn2lJpi-tSdvXVfO1nHL6L_sktwO0ewPLFd4_RJudxcTj4iC7bIfj_T_gEYrOT3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273189608</pqid></control><display><type>article</type><title>Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Xue ; Qi, Manlin ; Sun, Xiaolin ; Weir, Michael D. ; Tay, Franklin R. ; Oates, Thomas W. ; Dong, Biao ; Zhou, Yanmin ; Wang, Lin ; Xu, Hockin H.K.</creator><creatorcontrib>Li, Xue ; Qi, Manlin ; Sun, Xiaolin ; Weir, Michael D. ; Tay, Franklin R. ; Oates, Thomas W. ; Dong, Biao ; Zhou, Yanmin ; Wang, Lin ; Xu, Hockin H.K.</creatorcontrib><description>[Display omitted]
Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, the authors developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium (Ti) surfaces to enhance their antibacterial and anti-inflammatory properties. The objectives of the study were to: (1) develop novel Ti surfaces modified with different shapes of nano-CeO2 (nanorod, nanocube and nano-octahedron) for peri-implantitis prevention; (2) investigate and compare the inhibition efficacy of different shapes of CeO2-modified surfaces against biofilms of peri-implantitis-related pathogens; and (3) evaluate the different CeO2-modified surfaces on cell inflammatory response in vitro and in vivo. The results showed that nanorod CeO2-modified Ti had more bacteria attachment of Streptococcus sanguinis in the early stage, compared with other CeO2-modified Ti (p < 0.05). They all exhibited similarly substantial CFU reductions against peri-implantitis-related biofilms (p > 0.1). Nanocube and nano-octahedron CeO2-modified Ti exerted much better anti-inflammatory effects and ROS-scavenging ability than nanorod CeO2in vitro (p < 0.05). In vivo, the mean mRNA expression of TNF-α, IL-6 and IL-1β in the tissues around Ti was decreased by the three shapes of nano-CeO2; nano-octahedron CeO2 showed the strongest anti-inflammatory effect among all groups (p < 0.05). In conclusion, all three types of CeO2-modified Ti exerted equally strong antibacterial properties; nano-octahedron CeO2-modified Ti had the best anti-inflammatory effect. Therefore, CeO2-modified Ti surfaces are highly promising for enhancing antimicrobial functions for dental implants. Novel nano-octahedron CeO2 coating on Ti had great therapeutic potential for alleviating and eliminating peri-implantitis.
Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, we developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium surfaces to enhance their antibacterial and anti-inflammatory properties for dental implants. In addition, we found that the nano-octahedron CeO2 coating on titanium would have great therapeutic potential for alleviating and eliminating peri-implantitis.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2019.06.023</identifier><identifier>PMID: 31212111</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Anti-inflammation ; Anti-inflammatory agents ; Anti-Inflammatory Agents - pharmacology ; Antibacterial ; Biofilms ; Biofilms - drug effects ; Biofilms - growth & development ; Catalysis ; Ceria ; Cerium - chemistry ; Cerium - pharmacology ; Cerium oxides ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Dental implants ; Dental prosthetics ; Dental restorative materials ; Dogs ; Gene expression ; Humans ; IL-1β ; Implants, Experimental ; Inflammation ; Inflammatory response ; Interleukin 6 ; Materials Testing ; Nanorods ; Nanostructure ; Nanotubes - chemistry ; Peri-implantitis ; Risk analysis ; Risk factors ; Scavenging ; Shape control ; Streptococcus - physiology ; Streptococcus sanguis ; Surgical implants ; Titanium ; Titanium - chemistry ; Titanium - pharmacology ; Transplants & implants ; Tumor necrosis factor-α</subject><ispartof>Acta biomaterialia, 2019-08, Vol.94, p.627-643</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-b389e36a50f256d576e5a3704cd3797949e23f7ac3a792f80ab3a139b9883f7d3</citedby><cites>FETCH-LOGICAL-c493t-b389e36a50f256d576e5a3704cd3797949e23f7ac3a792f80ab3a139b9883f7d3</cites><orcidid>0000-0001-5160-8866 ; 0000-0002-5696-1076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706119304349$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31212111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Qi, Manlin</creatorcontrib><creatorcontrib>Sun, Xiaolin</creatorcontrib><creatorcontrib>Weir, Michael D.</creatorcontrib><creatorcontrib>Tay, Franklin R.</creatorcontrib><creatorcontrib>Oates, Thomas W.</creatorcontrib><creatorcontrib>Dong, Biao</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Xu, Hockin H.K.</creatorcontrib><title>Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, the authors developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium (Ti) surfaces to enhance their antibacterial and anti-inflammatory properties. The objectives of the study were to: (1) develop novel Ti surfaces modified with different shapes of nano-CeO2 (nanorod, nanocube and nano-octahedron) for peri-implantitis prevention; (2) investigate and compare the inhibition efficacy of different shapes of CeO2-modified surfaces against biofilms of peri-implantitis-related pathogens; and (3) evaluate the different CeO2-modified surfaces on cell inflammatory response in vitro and in vivo. The results showed that nanorod CeO2-modified Ti had more bacteria attachment of Streptococcus sanguinis in the early stage, compared with other CeO2-modified Ti (p < 0.05). They all exhibited similarly substantial CFU reductions against peri-implantitis-related biofilms (p > 0.1). Nanocube and nano-octahedron CeO2-modified Ti exerted much better anti-inflammatory effects and ROS-scavenging ability than nanorod CeO2in vitro (p < 0.05). In vivo, the mean mRNA expression of TNF-α, IL-6 and IL-1β in the tissues around Ti was decreased by the three shapes of nano-CeO2; nano-octahedron CeO2 showed the strongest anti-inflammatory effect among all groups (p < 0.05). In conclusion, all three types of CeO2-modified Ti exerted equally strong antibacterial properties; nano-octahedron CeO2-modified Ti had the best anti-inflammatory effect. Therefore, CeO2-modified Ti surfaces are highly promising for enhancing antimicrobial functions for dental implants. Novel nano-octahedron CeO2 coating on Ti had great therapeutic potential for alleviating and eliminating peri-implantitis.
Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, we developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium surfaces to enhance their antibacterial and anti-inflammatory properties for dental implants. In addition, we found that the nano-octahedron CeO2 coating on titanium would have great therapeutic potential for alleviating and eliminating peri-implantitis.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-inflammation</subject><subject>Anti-inflammatory agents</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Antibacterial</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth & development</subject><subject>Catalysis</subject><subject>Ceria</subject><subject>Cerium - chemistry</subject><subject>Cerium - pharmacology</subject><subject>Cerium oxides</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Dental implants</subject><subject>Dental prosthetics</subject><subject>Dental restorative materials</subject><subject>Dogs</subject><subject>Gene expression</subject><subject>Humans</subject><subject>IL-1β</subject><subject>Implants, Experimental</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Interleukin 6</subject><subject>Materials Testing</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanotubes - chemistry</subject><subject>Peri-implantitis</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Scavenging</subject><subject>Shape control</subject><subject>Streptococcus - physiology</subject><subject>Streptococcus sanguis</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>Transplants & implants</subject><subject>Tumor necrosis factor-α</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1L5TAUhoMo6qj_QKTgujUfbT42wiCjMyC4UNfhND2FXNrmmqSC_97cuY7LIYskL885J3kIuWS0YZTJm00DLvc-NJwy01DZUC4OyCnTSteqk_qwnFXLa0UlOyE_UtpQKjTj-picCMbLYuyUrM9rHMFhlSNCnnHJqQpLlX2Gxa9z5eftBLvw3UO1wBJSjqvLa8ShchhLOIZYFcL35Tm7YCq34W9S-2WcYJ4hh_hROdhC7yefPaZzcjTClPDiaz8jr_e_Xu5-149PD3_ufj7WrjUi173QBoWEjo68k0OnJHYgFG3dIJRRpjXIxajACVCGj5pCL4AJ0xutSz6IM3K977uN4W3FlO0mrHEpIy3nSjBtJNWFaveUiyGliKPdRj9D_LCM2p1ru7F713bn2lJpi-tSdvXVfO1nHL6L_sktwO0ewPLFd4_RJudxcTj4iC7bIfj_T_gEYrOT3A</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Li, Xue</creator><creator>Qi, Manlin</creator><creator>Sun, Xiaolin</creator><creator>Weir, Michael D.</creator><creator>Tay, Franklin R.</creator><creator>Oates, Thomas W.</creator><creator>Dong, Biao</creator><creator>Zhou, Yanmin</creator><creator>Wang, Lin</creator><creator>Xu, Hockin H.K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5160-8866</orcidid><orcidid>https://orcid.org/0000-0002-5696-1076</orcidid></search><sort><creationdate>20190801</creationdate><title>Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities</title><author>Li, Xue ; Qi, Manlin ; Sun, Xiaolin ; Weir, Michael D. ; Tay, Franklin R. ; Oates, Thomas W. ; Dong, Biao ; Zhou, Yanmin ; Wang, Lin ; Xu, Hockin H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-b389e36a50f256d576e5a3704cd3797949e23f7ac3a792f80ab3a139b9883f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-inflammation</topic><topic>Anti-inflammatory agents</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Antibacterial</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth & development</topic><topic>Catalysis</topic><topic>Ceria</topic><topic>Cerium - chemistry</topic><topic>Cerium - pharmacology</topic><topic>Cerium oxides</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Dental implants</topic><topic>Dental prosthetics</topic><topic>Dental restorative materials</topic><topic>Dogs</topic><topic>Gene expression</topic><topic>Humans</topic><topic>IL-1β</topic><topic>Implants, Experimental</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Interleukin 6</topic><topic>Materials Testing</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanotubes - chemistry</topic><topic>Peri-implantitis</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Scavenging</topic><topic>Shape control</topic><topic>Streptococcus - physiology</topic><topic>Streptococcus sanguis</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>Transplants & implants</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Qi, Manlin</creatorcontrib><creatorcontrib>Sun, Xiaolin</creatorcontrib><creatorcontrib>Weir, Michael D.</creatorcontrib><creatorcontrib>Tay, Franklin R.</creatorcontrib><creatorcontrib>Oates, Thomas W.</creatorcontrib><creatorcontrib>Dong, Biao</creatorcontrib><creatorcontrib>Zhou, Yanmin</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Xu, Hockin H.K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xue</au><au>Qi, Manlin</au><au>Sun, Xiaolin</au><au>Weir, Michael D.</au><au>Tay, Franklin R.</au><au>Oates, Thomas W.</au><au>Dong, Biao</au><au>Zhou, Yanmin</au><au>Wang, Lin</au><au>Xu, Hockin H.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>94</volume><spage>627</spage><epage>643</epage><pages>627-643</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, the authors developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium (Ti) surfaces to enhance their antibacterial and anti-inflammatory properties. The objectives of the study were to: (1) develop novel Ti surfaces modified with different shapes of nano-CeO2 (nanorod, nanocube and nano-octahedron) for peri-implantitis prevention; (2) investigate and compare the inhibition efficacy of different shapes of CeO2-modified surfaces against biofilms of peri-implantitis-related pathogens; and (3) evaluate the different CeO2-modified surfaces on cell inflammatory response in vitro and in vivo. The results showed that nanorod CeO2-modified Ti had more bacteria attachment of Streptococcus sanguinis in the early stage, compared with other CeO2-modified Ti (p < 0.05). They all exhibited similarly substantial CFU reductions against peri-implantitis-related biofilms (p > 0.1). Nanocube and nano-octahedron CeO2-modified Ti exerted much better anti-inflammatory effects and ROS-scavenging ability than nanorod CeO2in vitro (p < 0.05). In vivo, the mean mRNA expression of TNF-α, IL-6 and IL-1β in the tissues around Ti was decreased by the three shapes of nano-CeO2; nano-octahedron CeO2 showed the strongest anti-inflammatory effect among all groups (p < 0.05). In conclusion, all three types of CeO2-modified Ti exerted equally strong antibacterial properties; nano-octahedron CeO2-modified Ti had the best anti-inflammatory effect. Therefore, CeO2-modified Ti surfaces are highly promising for enhancing antimicrobial functions for dental implants. Novel nano-octahedron CeO2 coating on Ti had great therapeutic potential for alleviating and eliminating peri-implantitis.
Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, we developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium surfaces to enhance their antibacterial and anti-inflammatory properties for dental implants. In addition, we found that the nano-octahedron CeO2 coating on titanium would have great therapeutic potential for alleviating and eliminating peri-implantitis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31212111</pmid><doi>10.1016/j.actbio.2019.06.023</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5160-8866</orcidid><orcidid>https://orcid.org/0000-0002-5696-1076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2019-08, Vol.94, p.627-643 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_journals_2273189608 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Anti-inflammation Anti-inflammatory agents Anti-Inflammatory Agents - pharmacology Antibacterial Biofilms Biofilms - drug effects Biofilms - growth & development Catalysis Ceria Cerium - chemistry Cerium - pharmacology Cerium oxides Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - pharmacology Dental implants Dental prosthetics Dental restorative materials Dogs Gene expression Humans IL-1β Implants, Experimental Inflammation Inflammatory response Interleukin 6 Materials Testing Nanorods Nanostructure Nanotubes - chemistry Peri-implantitis Risk analysis Risk factors Scavenging Shape control Streptococcus - physiology Streptococcus sanguis Surgical implants Titanium Titanium - chemistry Titanium - pharmacology Transplants & implants Tumor necrosis factor-α |
title | Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20treatments%20on%20titanium%20implants%20via%20nanostructured%20ceria%20for%20antibacterial%20and%20anti-inflammatory%20capabilities&rft.jtitle=Acta%20biomaterialia&rft.au=Li,%20Xue&rft.date=2019-08-01&rft.volume=94&rft.spage=627&rft.epage=643&rft.pages=627-643&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2019.06.023&rft_dat=%3Cproquest_cross%3E2273189608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273189608&rft_id=info:pmid/31212111&rft_els_id=S1742706119304349&rfr_iscdi=true |