Synthesis and thermal properties of a triblock copolymer for lithium metal polymer batteries

PEO-based polymer electrolytes usually show a high degree of crystallinity, leading to a drop of ionic conductivity, at temperatures below their melting point [1]. However, the incorporation of foreign units in the polymer chains, forming a copolymer, can reduce the crystallinity while keeping the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2019-08, Vol.176, p.101-109
Hauptverfasser: Zhang, Xuewei, Guillerm, Brieuc, Prud'homme, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue
container_start_page 101
container_title Polymer (Guilford)
container_volume 176
creator Zhang, Xuewei
Guillerm, Brieuc
Prud'homme, Robert E.
description PEO-based polymer electrolytes usually show a high degree of crystallinity, leading to a drop of ionic conductivity, at temperatures below their melting point [1]. However, the incorporation of foreign units in the polymer chains, forming a copolymer, can reduce the crystallinity while keeping the conductivity high if the units are properly chosen. In this study, a series of poly(styrene-co-styrene trifluoromethanesulfonylimide of potassium)-b-poly(ethylene oxide)-b-poly(styrene-co-styrene trifluoromethanesulfonylimide of potassium) (P(S-co-KSTFSI)-b-PEO-b-P(S-co-KSTFSI)) BAB triblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) in a dispersed medium. It was found that the copolymers, with or without styrene, containing 59% (wt%) or more PEO, are semi-crystalline while, below this value, they are amorphous. However a low PEO content can be compensated by a low KSTFSI/PEO ratio for the BAB copolymers with styrene since materials containing only between 53 and 58% (wt%) PEO can still crystallize for a KSTFSI/PEO ratio of about 40/100. For the copolymers that crystallize, with or without styrene, the degree of crystallinity decreases with a reduction of the PEO content. In the case of a constant PEO content, the degree of crystallinity increases with the styrene content (and with the decrease of the KSTFSI/PEO ratio). In all cases, only one Tg is observed, the only difference is the width, which is larger for the copolymers than the corresponding homopolymers. [Display omitted]
doi_str_mv 10.1016/j.polymer.2019.05.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273189518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386119304471</els_id><sourcerecordid>2273189518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-e1ef1cb7316d6587861840351a36548cd9c4eb3d4df1d2d493e46847ce938cf13</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoJQsB1a15t05WI-IIBF-pOCG1yy6S2TU0ywvy9GaZ7V_fCuedxD0LXlOSU0PK2z2c37EfwOSO0zkmRE85P0IrKimeM1fQUrQjhLOOypOfoIoSeEMIKJlbo630_xS0EG3AzGZxWPzYDnr2bwUcLAbsONzh62w5Of2PtFi_cOY8HG7d2N-IR4oG0IG0TI_jEvURnXTMEuFrmGn0-PX48vGSbt-fXh_tNpnklYgYUOqrbitPSlIWsUkopCC9ow8tCSG1qLaDlRpiOGmZEzUGUUlQaai51R_ka3Rx1U-yfHYSoerfzU7JUjCVZWRdUpqvieKW9C8FDp2Zvx8bvFSXqUKTq1fKCOhSpSKFSkYl3d-RBeuHXJjRoC5MGYz3oqIyz_yj8AYgsgE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273189518</pqid></control><display><type>article</type><title>Synthesis and thermal properties of a triblock copolymer for lithium metal polymer batteries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Xuewei ; Guillerm, Brieuc ; Prud'homme, Robert E.</creator><creatorcontrib>Zhang, Xuewei ; Guillerm, Brieuc ; Prud'homme, Robert E.</creatorcontrib><description>PEO-based polymer electrolytes usually show a high degree of crystallinity, leading to a drop of ionic conductivity, at temperatures below their melting point [1]. However, the incorporation of foreign units in the polymer chains, forming a copolymer, can reduce the crystallinity while keeping the conductivity high if the units are properly chosen. In this study, a series of poly(styrene-co-styrene trifluoromethanesulfonylimide of potassium)-b-poly(ethylene oxide)-b-poly(styrene-co-styrene trifluoromethanesulfonylimide of potassium) (P(S-co-KSTFSI)-b-PEO-b-P(S-co-KSTFSI)) BAB triblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) in a dispersed medium. It was found that the copolymers, with or without styrene, containing 59% (wt%) or more PEO, are semi-crystalline while, below this value, they are amorphous. However a low PEO content can be compensated by a low KSTFSI/PEO ratio for the BAB copolymers with styrene since materials containing only between 53 and 58% (wt%) PEO can still crystallize for a KSTFSI/PEO ratio of about 40/100. For the copolymers that crystallize, with or without styrene, the degree of crystallinity decreases with a reduction of the PEO content. In the case of a constant PEO content, the degree of crystallinity increases with the styrene content (and with the decrease of the KSTFSI/PEO ratio). In all cases, only one Tg is observed, the only difference is the width, which is larger for the copolymers than the corresponding homopolymers. [Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2019.05.033</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Addition polymerization ; Batteries ; Block copolymers ; Chain transfer ; Chains (polymeric) ; Chemical industry ; Conductivity ; Copolymers ; Crystal structure ; Crystallinity ; Degree of crystallinity ; Electrolytes ; Ethylene oxide ; Ion currents ; Lithium ; Melting point ; Melting points ; Polyethylene oxide ; Polymerization ; Polymers ; Polystyrene resins ; Potassium ; Styrene ; Styrenes ; Thermal properties ; Thermodynamic properties</subject><ispartof>Polymer (Guilford), 2019-08, Vol.176, p.101-109</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-e1ef1cb7316d6587861840351a36548cd9c4eb3d4df1d2d493e46847ce938cf13</citedby><cites>FETCH-LOGICAL-c374t-e1ef1cb7316d6587861840351a36548cd9c4eb3d4df1d2d493e46847ce938cf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2019.05.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Xuewei</creatorcontrib><creatorcontrib>Guillerm, Brieuc</creatorcontrib><creatorcontrib>Prud'homme, Robert E.</creatorcontrib><title>Synthesis and thermal properties of a triblock copolymer for lithium metal polymer batteries</title><title>Polymer (Guilford)</title><description>PEO-based polymer electrolytes usually show a high degree of crystallinity, leading to a drop of ionic conductivity, at temperatures below their melting point [1]. However, the incorporation of foreign units in the polymer chains, forming a copolymer, can reduce the crystallinity while keeping the conductivity high if the units are properly chosen. In this study, a series of poly(styrene-co-styrene trifluoromethanesulfonylimide of potassium)-b-poly(ethylene oxide)-b-poly(styrene-co-styrene trifluoromethanesulfonylimide of potassium) (P(S-co-KSTFSI)-b-PEO-b-P(S-co-KSTFSI)) BAB triblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) in a dispersed medium. It was found that the copolymers, with or without styrene, containing 59% (wt%) or more PEO, are semi-crystalline while, below this value, they are amorphous. However a low PEO content can be compensated by a low KSTFSI/PEO ratio for the BAB copolymers with styrene since materials containing only between 53 and 58% (wt%) PEO can still crystallize for a KSTFSI/PEO ratio of about 40/100. For the copolymers that crystallize, with or without styrene, the degree of crystallinity decreases with a reduction of the PEO content. In the case of a constant PEO content, the degree of crystallinity increases with the styrene content (and with the decrease of the KSTFSI/PEO ratio). In all cases, only one Tg is observed, the only difference is the width, which is larger for the copolymers than the corresponding homopolymers. [Display omitted]</description><subject>Addition polymerization</subject><subject>Batteries</subject><subject>Block copolymers</subject><subject>Chain transfer</subject><subject>Chains (polymeric)</subject><subject>Chemical industry</subject><subject>Conductivity</subject><subject>Copolymers</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degree of crystallinity</subject><subject>Electrolytes</subject><subject>Ethylene oxide</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Polyethylene oxide</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Potassium</subject><subject>Styrene</subject><subject>Styrenes</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoJQsB1a15t05WI-IIBF-pOCG1yy6S2TU0ywvy9GaZ7V_fCuedxD0LXlOSU0PK2z2c37EfwOSO0zkmRE85P0IrKimeM1fQUrQjhLOOypOfoIoSeEMIKJlbo630_xS0EG3AzGZxWPzYDnr2bwUcLAbsONzh62w5Of2PtFi_cOY8HG7d2N-IR4oG0IG0TI_jEvURnXTMEuFrmGn0-PX48vGSbt-fXh_tNpnklYgYUOqrbitPSlIWsUkopCC9ow8tCSG1qLaDlRpiOGmZEzUGUUlQaai51R_ka3Rx1U-yfHYSoerfzU7JUjCVZWRdUpqvieKW9C8FDp2Zvx8bvFSXqUKTq1fKCOhSpSKFSkYl3d-RBeuHXJjRoC5MGYz3oqIyz_yj8AYgsgE4</recordid><startdate>20190802</startdate><enddate>20190802</enddate><creator>Zhang, Xuewei</creator><creator>Guillerm, Brieuc</creator><creator>Prud'homme, Robert E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190802</creationdate><title>Synthesis and thermal properties of a triblock copolymer for lithium metal polymer batteries</title><author>Zhang, Xuewei ; Guillerm, Brieuc ; Prud'homme, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-e1ef1cb7316d6587861840351a36548cd9c4eb3d4df1d2d493e46847ce938cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Addition polymerization</topic><topic>Batteries</topic><topic>Block copolymers</topic><topic>Chain transfer</topic><topic>Chains (polymeric)</topic><topic>Chemical industry</topic><topic>Conductivity</topic><topic>Copolymers</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degree of crystallinity</topic><topic>Electrolytes</topic><topic>Ethylene oxide</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Polyethylene oxide</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Potassium</topic><topic>Styrene</topic><topic>Styrenes</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuewei</creatorcontrib><creatorcontrib>Guillerm, Brieuc</creatorcontrib><creatorcontrib>Prud'homme, Robert E.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuewei</au><au>Guillerm, Brieuc</au><au>Prud'homme, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and thermal properties of a triblock copolymer for lithium metal polymer batteries</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-08-02</date><risdate>2019</risdate><volume>176</volume><spage>101</spage><epage>109</epage><pages>101-109</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>PEO-based polymer electrolytes usually show a high degree of crystallinity, leading to a drop of ionic conductivity, at temperatures below their melting point [1]. However, the incorporation of foreign units in the polymer chains, forming a copolymer, can reduce the crystallinity while keeping the conductivity high if the units are properly chosen. In this study, a series of poly(styrene-co-styrene trifluoromethanesulfonylimide of potassium)-b-poly(ethylene oxide)-b-poly(styrene-co-styrene trifluoromethanesulfonylimide of potassium) (P(S-co-KSTFSI)-b-PEO-b-P(S-co-KSTFSI)) BAB triblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) in a dispersed medium. It was found that the copolymers, with or without styrene, containing 59% (wt%) or more PEO, are semi-crystalline while, below this value, they are amorphous. However a low PEO content can be compensated by a low KSTFSI/PEO ratio for the BAB copolymers with styrene since materials containing only between 53 and 58% (wt%) PEO can still crystallize for a KSTFSI/PEO ratio of about 40/100. For the copolymers that crystallize, with or without styrene, the degree of crystallinity decreases with a reduction of the PEO content. In the case of a constant PEO content, the degree of crystallinity increases with the styrene content (and with the decrease of the KSTFSI/PEO ratio). In all cases, only one Tg is observed, the only difference is the width, which is larger for the copolymers than the corresponding homopolymers. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2019.05.033</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2019-08, Vol.176, p.101-109
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2273189518
source Access via ScienceDirect (Elsevier)
subjects Addition polymerization
Batteries
Block copolymers
Chain transfer
Chains (polymeric)
Chemical industry
Conductivity
Copolymers
Crystal structure
Crystallinity
Degree of crystallinity
Electrolytes
Ethylene oxide
Ion currents
Lithium
Melting point
Melting points
Polyethylene oxide
Polymerization
Polymers
Polystyrene resins
Potassium
Styrene
Styrenes
Thermal properties
Thermodynamic properties
title Synthesis and thermal properties of a triblock copolymer for lithium metal polymer batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20thermal%20properties%20of%20a%20triblock%20copolymer%20for%20lithium%20metal%20polymer%20batteries&rft.jtitle=Polymer%20(Guilford)&rft.au=Zhang,%20Xuewei&rft.date=2019-08-02&rft.volume=176&rft.spage=101&rft.epage=109&rft.pages=101-109&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2019.05.033&rft_dat=%3Cproquest_cross%3E2273189518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273189518&rft_id=info:pmid/&rft_els_id=S0032386119304471&rfr_iscdi=true