Free-electron effects on the optical absorption of the hybrid perovskite CH3NH3PbI3 from first principles

Hybrid organic-inorganic perovskites, such as methylammonium lead tri-iodide (MAPbI3), are interesting candidates for efficient absorber materials in next-generation solar cells, partly due to an unusual combination of low exciton-binding energy and strong optical absorption. Excitonic effects in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-07, Vol.100 (3), p.035205
Hauptverfasser: Leveillee, Joshua, Schleife, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 035205
container_title Physical review. B
container_volume 100
creator Leveillee, Joshua
Schleife, André
description Hybrid organic-inorganic perovskites, such as methylammonium lead tri-iodide (MAPbI3), are interesting candidates for efficient absorber materials in next-generation solar cells, partly due to an unusual combination of low exciton-binding energy and strong optical absorption. Excitonic effects in this material have been subject to debate both for experiment and theory, indicating a need for better understanding of the screening mechanisms that act upon the electron-hole interaction. Here, we use cutting-edge first-principles theoretical spectroscopy, based on density-functional and many-body perturbation theory, to study atomic geometries, electronic structure, and optical properties of three MAPbI3 polymorphs and find good agreement with earlier results and experiment. We then study the influence of free electrons on the electron-hole interaction and show that this explains consistently smaller exciton-binding energies, compared to those in the material without free electrons. Interestingly, we also find that the absorption line shape strongly resembles that of the spectrum without free electrons up to high free-electron concentrations. We explain this unexpected behavior by formation of Mahan excitons that dominate the absorption edge, making MAPbI3 robust against free-electron-induced changes observed in other semiconductors.
doi_str_mv 10.1103/PhysRevB.100.035205
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2273188947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273188947</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-70f5497d3b663b297099440113bfd969f6c0567126476531580397024d3bdb453</originalsourceid><addsrcrecordid>eNo9j0tLAzEUhYMoWGp_gZuA66k378lSi3UKRYvoujQzCU0dmzFJC_33xgeu7sc95z4OQtcEpoQAu11tT-nFHu-nBGAKTFAQZ2hEudSV1lKf_7OASzRJaQcARIJWoEfIz6O1le1tm2PYY-tcoYQL5q3FYci-3fR4Y1KIhUs7uB9lezLRd3iwMRzTu88Wzxr21LCVWTDsYvjAzseU8RD9vvVDb9MVunCbPtnJXx2jt_nD66ypls-Pi9ndshpIzXKlwAmuVceMlMzQ7y8150AIM64rcZxsQUhFqORKCkZEDayYKC8TneGCjdHN794hhs-DTXm9C4e4LyfXlCpG6lpzxb4Ah6padg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273188947</pqid></control><display><type>article</type><title>Free-electron effects on the optical absorption of the hybrid perovskite CH3NH3PbI3 from first principles</title><source>American Physical Society Journals</source><creator>Leveillee, Joshua ; Schleife, André</creator><creatorcontrib>Leveillee, Joshua ; Schleife, André</creatorcontrib><description>Hybrid organic-inorganic perovskites, such as methylammonium lead tri-iodide (MAPbI3), are interesting candidates for efficient absorber materials in next-generation solar cells, partly due to an unusual combination of low exciton-binding energy and strong optical absorption. Excitonic effects in this material have been subject to debate both for experiment and theory, indicating a need for better understanding of the screening mechanisms that act upon the electron-hole interaction. Here, we use cutting-edge first-principles theoretical spectroscopy, based on density-functional and many-body perturbation theory, to study atomic geometries, electronic structure, and optical properties of three MAPbI3 polymorphs and find good agreement with earlier results and experiment. We then study the influence of free electrons on the electron-hole interaction and show that this explains consistently smaller exciton-binding energies, compared to those in the material without free electrons. Interestingly, we also find that the absorption line shape strongly resembles that of the spectrum without free electrons up to high free-electron concentrations. We explain this unexpected behavior by formation of Mahan excitons that dominate the absorption edge, making MAPbI3 robust against free-electron-induced changes observed in other semiconductors.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.035205</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Absorbers (materials) ; Absorption ; Atomic structure ; Binding energy ; Electron-hole interaction ; Electronic structure ; Excitons ; First principles ; Free electrons ; Holes (electron deficiencies) ; Line shape ; Optical properties ; Perovskites ; Perturbation theory ; Photovoltaic cells ; Solar cells</subject><ispartof>Physical review. B, 2019-07, Vol.100 (3), p.035205</ispartof><rights>Copyright American Physical Society Jul 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leveillee, Joshua</creatorcontrib><creatorcontrib>Schleife, André</creatorcontrib><title>Free-electron effects on the optical absorption of the hybrid perovskite CH3NH3PbI3 from first principles</title><title>Physical review. B</title><description>Hybrid organic-inorganic perovskites, such as methylammonium lead tri-iodide (MAPbI3), are interesting candidates for efficient absorber materials in next-generation solar cells, partly due to an unusual combination of low exciton-binding energy and strong optical absorption. Excitonic effects in this material have been subject to debate both for experiment and theory, indicating a need for better understanding of the screening mechanisms that act upon the electron-hole interaction. Here, we use cutting-edge first-principles theoretical spectroscopy, based on density-functional and many-body perturbation theory, to study atomic geometries, electronic structure, and optical properties of three MAPbI3 polymorphs and find good agreement with earlier results and experiment. We then study the influence of free electrons on the electron-hole interaction and show that this explains consistently smaller exciton-binding energies, compared to those in the material without free electrons. Interestingly, we also find that the absorption line shape strongly resembles that of the spectrum without free electrons up to high free-electron concentrations. We explain this unexpected behavior by formation of Mahan excitons that dominate the absorption edge, making MAPbI3 robust against free-electron-induced changes observed in other semiconductors.</description><subject>Absorbers (materials)</subject><subject>Absorption</subject><subject>Atomic structure</subject><subject>Binding energy</subject><subject>Electron-hole interaction</subject><subject>Electronic structure</subject><subject>Excitons</subject><subject>First principles</subject><subject>Free electrons</subject><subject>Holes (electron deficiencies)</subject><subject>Line shape</subject><subject>Optical properties</subject><subject>Perovskites</subject><subject>Perturbation theory</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLAzEUhYMoWGp_gZuA66k378lSi3UKRYvoujQzCU0dmzFJC_33xgeu7sc95z4OQtcEpoQAu11tT-nFHu-nBGAKTFAQZ2hEudSV1lKf_7OASzRJaQcARIJWoEfIz6O1le1tm2PYY-tcoYQL5q3FYci-3fR4Y1KIhUs7uB9lezLRd3iwMRzTu88Wzxr21LCVWTDsYvjAzseU8RD9vvVDb9MVunCbPtnJXx2jt_nD66ypls-Pi9ndshpIzXKlwAmuVceMlMzQ7y8150AIM64rcZxsQUhFqORKCkZEDayYKC8TneGCjdHN794hhs-DTXm9C4e4LyfXlCpG6lpzxb4Ah6padg</recordid><startdate>20190719</startdate><enddate>20190719</enddate><creator>Leveillee, Joshua</creator><creator>Schleife, André</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190719</creationdate><title>Free-electron effects on the optical absorption of the hybrid perovskite CH3NH3PbI3 from first principles</title><author>Leveillee, Joshua ; Schleife, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-70f5497d3b663b297099440113bfd969f6c0567126476531580397024d3bdb453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbers (materials)</topic><topic>Absorption</topic><topic>Atomic structure</topic><topic>Binding energy</topic><topic>Electron-hole interaction</topic><topic>Electronic structure</topic><topic>Excitons</topic><topic>First principles</topic><topic>Free electrons</topic><topic>Holes (electron deficiencies)</topic><topic>Line shape</topic><topic>Optical properties</topic><topic>Perovskites</topic><topic>Perturbation theory</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leveillee, Joshua</creatorcontrib><creatorcontrib>Schleife, André</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leveillee, Joshua</au><au>Schleife, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free-electron effects on the optical absorption of the hybrid perovskite CH3NH3PbI3 from first principles</atitle><jtitle>Physical review. B</jtitle><date>2019-07-19</date><risdate>2019</risdate><volume>100</volume><issue>3</issue><spage>035205</spage><pages>035205-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Hybrid organic-inorganic perovskites, such as methylammonium lead tri-iodide (MAPbI3), are interesting candidates for efficient absorber materials in next-generation solar cells, partly due to an unusual combination of low exciton-binding energy and strong optical absorption. Excitonic effects in this material have been subject to debate both for experiment and theory, indicating a need for better understanding of the screening mechanisms that act upon the electron-hole interaction. Here, we use cutting-edge first-principles theoretical spectroscopy, based on density-functional and many-body perturbation theory, to study atomic geometries, electronic structure, and optical properties of three MAPbI3 polymorphs and find good agreement with earlier results and experiment. We then study the influence of free electrons on the electron-hole interaction and show that this explains consistently smaller exciton-binding energies, compared to those in the material without free electrons. Interestingly, we also find that the absorption line shape strongly resembles that of the spectrum without free electrons up to high free-electron concentrations. We explain this unexpected behavior by formation of Mahan excitons that dominate the absorption edge, making MAPbI3 robust against free-electron-induced changes observed in other semiconductors.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.035205</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-07, Vol.100 (3), p.035205
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2273188947
source American Physical Society Journals
subjects Absorbers (materials)
Absorption
Atomic structure
Binding energy
Electron-hole interaction
Electronic structure
Excitons
First principles
Free electrons
Holes (electron deficiencies)
Line shape
Optical properties
Perovskites
Perturbation theory
Photovoltaic cells
Solar cells
title Free-electron effects on the optical absorption of the hybrid perovskite CH3NH3PbI3 from first principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free-electron%20effects%20on%20the%20optical%20absorption%20of%20the%20hybrid%20perovskite%20CH3NH3PbI3%20from%20first%20principles&rft.jtitle=Physical%20review.%20B&rft.au=Leveillee,%20Joshua&rft.date=2019-07-19&rft.volume=100&rft.issue=3&rft.spage=035205&rft.pages=035205-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.035205&rft_dat=%3Cproquest%3E2273188947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273188947&rft_id=info:pmid/&rfr_iscdi=true