First-principles calculations of the atomic structure and electronic states of LixFeF3

We calculate the atomic and electronic structures of trirutile-type LixFeF3(x=0,0.25,0.5,0.75,and1) by first-principles calculations and evaluate the relative stability among the optimized structures by energy analysis. Li0.5FeF3 is more stable than the three-phase coexistence of FeF3,FeF2, and LiF,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-07, Vol.100 (3), p.035128
Hauptverfasser: Mori, Masahiro, Tanaka, Shingo, Senoh, Hiroshi, Matsui, Keitaro, Okumura, Toyoki, Sakaebe, Hikari, Kiuchi, Hisao, Matsubara, Eiichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 035128
container_title Physical review. B
container_volume 100
creator Mori, Masahiro
Tanaka, Shingo
Senoh, Hiroshi
Matsui, Keitaro
Okumura, Toyoki
Sakaebe, Hikari
Kiuchi, Hisao
Matsubara, Eiichiro
description We calculate the atomic and electronic structures of trirutile-type LixFeF3(x=0,0.25,0.5,0.75,and1) by first-principles calculations and evaluate the relative stability among the optimized structures by energy analysis. Li0.5FeF3 is more stable than the three-phase coexistence of FeF3,FeF2, and LiF, whereas the other compositions are unstable. The analyses of the local electron density, local atomic volume, and local atomic configurations show that the formal valence of Fe atoms decreases from trivalent (3+) to divalent (2+) after Li insertion. In addition, we calculate Fe K-edge x-ray absorption near-edge structure (XANES) spectra in LixFeF3 and compare them with observed spectra. The calculated XANES spectra agree well with the corresponding observed spectra in areas such as the spectral shape and relative position of the main peaks associated with Fe3+ and Fe2+. In particular, partial XANES spectra of Fe3+ in LixFeF3, for x=0.25,0.5, and 0.75, have a specific peak between the main peaks, associated with Fe3+ and Fe2+. The detailed study reveals that the energy level and intensity ratio of the Fe3+ main peaks depend on the adjacent cation site of Fe.
doi_str_mv 10.1103/PhysRevB.100.035128
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2273188020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273188020</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-3f99361fe119c4c1141808cde4f41e43895776f46d81aae53f4773d5b2f78bb23</originalsourceid><addsrcrecordid>eNo9jVFLwzAUhYMoOOZ-gS8FnzvvTdImedRhnTBQRH0daXrDOmpbk1T03zum-HQO5zucw9glwhIRxPXT7js-0-ftEgGWIArk-oTNuCxNbkxpTv99AedsEeMeALAEo8DM2FvVhpjyMbS9a8eOYuZs56bOpnboYzb4LO0os2l4b10WU5hcmsIh6JuMOnIpDP0R2ETH9qb9qqgSF-zM2y7S4k_n7LW6e1mt883j_cPqZpOPqEXKhTdGlOgJ0TjpECVq0K4h6SWSFNoUSpVelo1Ga6kQXiolmqLmXum65mLOrn53xzB8TBTTdj9MoT9cbjlXArUGDuIH7K5Vnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273188020</pqid></control><display><type>article</type><title>First-principles calculations of the atomic structure and electronic states of LixFeF3</title><source>American Physical Society Journals</source><creator>Mori, Masahiro ; Tanaka, Shingo ; Senoh, Hiroshi ; Matsui, Keitaro ; Okumura, Toyoki ; Sakaebe, Hikari ; Kiuchi, Hisao ; Matsubara, Eiichiro</creator><creatorcontrib>Mori, Masahiro ; Tanaka, Shingo ; Senoh, Hiroshi ; Matsui, Keitaro ; Okumura, Toyoki ; Sakaebe, Hikari ; Kiuchi, Hisao ; Matsubara, Eiichiro</creatorcontrib><description>We calculate the atomic and electronic structures of trirutile-type LixFeF3(x=0,0.25,0.5,0.75,and1) by first-principles calculations and evaluate the relative stability among the optimized structures by energy analysis. Li0.5FeF3 is more stable than the three-phase coexistence of FeF3,FeF2, and LiF, whereas the other compositions are unstable. The analyses of the local electron density, local atomic volume, and local atomic configurations show that the formal valence of Fe atoms decreases from trivalent (3+) to divalent (2+) after Li insertion. In addition, we calculate Fe K-edge x-ray absorption near-edge structure (XANES) spectra in LixFeF3 and compare them with observed spectra. The calculated XANES spectra agree well with the corresponding observed spectra in areas such as the spectral shape and relative position of the main peaks associated with Fe3+ and Fe2+. In particular, partial XANES spectra of Fe3+ in LixFeF3, for x=0.25,0.5, and 0.75, have a specific peak between the main peaks, associated with Fe3+ and Fe2+. The detailed study reveals that the energy level and intensity ratio of the Fe3+ main peaks depend on the adjacent cation site of Fe.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.035128</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Atomic structure ; Electron density ; Electron states ; Energy levels ; First principles ; Lithium fluoride ; Mathematical analysis ; Spectra ; Stability analysis ; Structural stability ; X ray absorption</subject><ispartof>Physical review. B, 2019-07, Vol.100 (3), p.035128</ispartof><rights>Copyright American Physical Society Jul 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mori, Masahiro</creatorcontrib><creatorcontrib>Tanaka, Shingo</creatorcontrib><creatorcontrib>Senoh, Hiroshi</creatorcontrib><creatorcontrib>Matsui, Keitaro</creatorcontrib><creatorcontrib>Okumura, Toyoki</creatorcontrib><creatorcontrib>Sakaebe, Hikari</creatorcontrib><creatorcontrib>Kiuchi, Hisao</creatorcontrib><creatorcontrib>Matsubara, Eiichiro</creatorcontrib><title>First-principles calculations of the atomic structure and electronic states of LixFeF3</title><title>Physical review. B</title><description>We calculate the atomic and electronic structures of trirutile-type LixFeF3(x=0,0.25,0.5,0.75,and1) by first-principles calculations and evaluate the relative stability among the optimized structures by energy analysis. Li0.5FeF3 is more stable than the three-phase coexistence of FeF3,FeF2, and LiF, whereas the other compositions are unstable. The analyses of the local electron density, local atomic volume, and local atomic configurations show that the formal valence of Fe atoms decreases from trivalent (3+) to divalent (2+) after Li insertion. In addition, we calculate Fe K-edge x-ray absorption near-edge structure (XANES) spectra in LixFeF3 and compare them with observed spectra. The calculated XANES spectra agree well with the corresponding observed spectra in areas such as the spectral shape and relative position of the main peaks associated with Fe3+ and Fe2+. In particular, partial XANES spectra of Fe3+ in LixFeF3, for x=0.25,0.5, and 0.75, have a specific peak between the main peaks, associated with Fe3+ and Fe2+. The detailed study reveals that the energy level and intensity ratio of the Fe3+ main peaks depend on the adjacent cation site of Fe.</description><subject>Atomic structure</subject><subject>Electron density</subject><subject>Electron states</subject><subject>Energy levels</subject><subject>First principles</subject><subject>Lithium fluoride</subject><subject>Mathematical analysis</subject><subject>Spectra</subject><subject>Stability analysis</subject><subject>Structural stability</subject><subject>X ray absorption</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9jVFLwzAUhYMoOOZ-gS8FnzvvTdImedRhnTBQRH0daXrDOmpbk1T03zum-HQO5zucw9glwhIRxPXT7js-0-ftEgGWIArk-oTNuCxNbkxpTv99AedsEeMeALAEo8DM2FvVhpjyMbS9a8eOYuZs56bOpnboYzb4LO0os2l4b10WU5hcmsIh6JuMOnIpDP0R2ETH9qb9qqgSF-zM2y7S4k_n7LW6e1mt883j_cPqZpOPqEXKhTdGlOgJ0TjpECVq0K4h6SWSFNoUSpVelo1Ga6kQXiolmqLmXum65mLOrn53xzB8TBTTdj9MoT9cbjlXArUGDuIH7K5Vnw</recordid><startdate>20190725</startdate><enddate>20190725</enddate><creator>Mori, Masahiro</creator><creator>Tanaka, Shingo</creator><creator>Senoh, Hiroshi</creator><creator>Matsui, Keitaro</creator><creator>Okumura, Toyoki</creator><creator>Sakaebe, Hikari</creator><creator>Kiuchi, Hisao</creator><creator>Matsubara, Eiichiro</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190725</creationdate><title>First-principles calculations of the atomic structure and electronic states of LixFeF3</title><author>Mori, Masahiro ; Tanaka, Shingo ; Senoh, Hiroshi ; Matsui, Keitaro ; Okumura, Toyoki ; Sakaebe, Hikari ; Kiuchi, Hisao ; Matsubara, Eiichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-3f99361fe119c4c1141808cde4f41e43895776f46d81aae53f4773d5b2f78bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic structure</topic><topic>Electron density</topic><topic>Electron states</topic><topic>Energy levels</topic><topic>First principles</topic><topic>Lithium fluoride</topic><topic>Mathematical analysis</topic><topic>Spectra</topic><topic>Stability analysis</topic><topic>Structural stability</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, Masahiro</creatorcontrib><creatorcontrib>Tanaka, Shingo</creatorcontrib><creatorcontrib>Senoh, Hiroshi</creatorcontrib><creatorcontrib>Matsui, Keitaro</creatorcontrib><creatorcontrib>Okumura, Toyoki</creatorcontrib><creatorcontrib>Sakaebe, Hikari</creatorcontrib><creatorcontrib>Kiuchi, Hisao</creatorcontrib><creatorcontrib>Matsubara, Eiichiro</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mori, Masahiro</au><au>Tanaka, Shingo</au><au>Senoh, Hiroshi</au><au>Matsui, Keitaro</au><au>Okumura, Toyoki</au><au>Sakaebe, Hikari</au><au>Kiuchi, Hisao</au><au>Matsubara, Eiichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles calculations of the atomic structure and electronic states of LixFeF3</atitle><jtitle>Physical review. B</jtitle><date>2019-07-25</date><risdate>2019</risdate><volume>100</volume><issue>3</issue><spage>035128</spage><pages>035128-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We calculate the atomic and electronic structures of trirutile-type LixFeF3(x=0,0.25,0.5,0.75,and1) by first-principles calculations and evaluate the relative stability among the optimized structures by energy analysis. Li0.5FeF3 is more stable than the three-phase coexistence of FeF3,FeF2, and LiF, whereas the other compositions are unstable. The analyses of the local electron density, local atomic volume, and local atomic configurations show that the formal valence of Fe atoms decreases from trivalent (3+) to divalent (2+) after Li insertion. In addition, we calculate Fe K-edge x-ray absorption near-edge structure (XANES) spectra in LixFeF3 and compare them with observed spectra. The calculated XANES spectra agree well with the corresponding observed spectra in areas such as the spectral shape and relative position of the main peaks associated with Fe3+ and Fe2+. In particular, partial XANES spectra of Fe3+ in LixFeF3, for x=0.25,0.5, and 0.75, have a specific peak between the main peaks, associated with Fe3+ and Fe2+. The detailed study reveals that the energy level and intensity ratio of the Fe3+ main peaks depend on the adjacent cation site of Fe.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.035128</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-07, Vol.100 (3), p.035128
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2273188020
source American Physical Society Journals
subjects Atomic structure
Electron density
Electron states
Energy levels
First principles
Lithium fluoride
Mathematical analysis
Spectra
Stability analysis
Structural stability
X ray absorption
title First-principles calculations of the atomic structure and electronic states of LixFeF3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20calculations%20of%20the%20atomic%20structure%20and%20electronic%20states%20of%20LixFeF3&rft.jtitle=Physical%20review.%20B&rft.au=Mori,%20Masahiro&rft.date=2019-07-25&rft.volume=100&rft.issue=3&rft.spage=035128&rft.pages=035128-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.035128&rft_dat=%3Cproquest%3E2273188020%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273188020&rft_id=info:pmid/&rfr_iscdi=true