Subgroup identification for precision medicine: A comparative review of 13 methods

Natural heterogeneity in patient populations can make it very hard to develop treatments that benefit all patients. As a result, an important goal of precision medicine is identification of patient subgroups that respond to treatment at a much higher (or lower) rate than the population average. Desp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Data mining and knowledge discovery 2019-09, Vol.9 (5), p.e1326-n/a
Hauptverfasser: Loh, Wei‐Yin, Cao, Luxi, Zhou, Peigen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e1326
container_title Wiley interdisciplinary reviews. Data mining and knowledge discovery
container_volume 9
creator Loh, Wei‐Yin
Cao, Luxi
Zhou, Peigen
description Natural heterogeneity in patient populations can make it very hard to develop treatments that benefit all patients. As a result, an important goal of precision medicine is identification of patient subgroups that respond to treatment at a much higher (or lower) rate than the population average. Despite there being many subgroup identification methods, there is no comprehensive comparative study of their statistical properties. We review 13 methods and use real‐world and simulated data to compare the performance of their publicly available software using seven criteria: (a) bias in selection of subgroup variables, (b) probability of false discovery, (c) probability of identifying correct predictive variables, (d) bias in estimates of subgroup treatment effects, (e) expected subgroup size, (f) expected true treatment effect of subgroups, and (g) subgroup stability. The results show that many methods fare poorly on at least one criterion. This article is categorized under: Technologies > Machine Learning Algorithmic Development > Hierarchies and Trees Algorithmic Development > Statistics Application Areas > Health Care Subgroup (in green) for breast cancer data; sample sizes and estimated treatment effects (log relative risks) beside and below nodes
doi_str_mv 10.1002/widm.1326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2273097831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273097831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-e6a8b2dad401b905728ae9586f8b49df32f74305ddd9fba6ae0514b534871363</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCo65g_9BwJOHbvnRNom3MZ0OJoIOPIa0STRjbWrSbuy_t3XizVxeHnzee_AF4BqjKUaIzA5OV1NMSX4GRlikJEmZyM7__pxdgkmMW9Q_SjjnZARe37riI_iugU6bunXWlap1vobWB9gEU7o4dJXRrnS1uYNzWPqqUaFXewOD2TtzgN5CTHvUfnodr8CFVbtoJr91DDbLh83iKVm_PK4W83VSEsHyxOSKF0QrnSJcCJQxwpURGc8tL1KhLSWWpRRlWmthC5UrgzKcFhlNOcM0p2Nwc1rbBP_VmdjKre9C3V-UhDCKBOMU9-r2pMrgYwzGyia4SoWjxEgOockhNDmE1tvZyR7czhz_h_J9df_8M_ENMa9uBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273097831</pqid></control><display><type>article</type><title>Subgroup identification for precision medicine: A comparative review of 13 methods</title><source>Wiley Online Library All Journals</source><creator>Loh, Wei‐Yin ; Cao, Luxi ; Zhou, Peigen</creator><creatorcontrib>Loh, Wei‐Yin ; Cao, Luxi ; Zhou, Peigen</creatorcontrib><description>Natural heterogeneity in patient populations can make it very hard to develop treatments that benefit all patients. As a result, an important goal of precision medicine is identification of patient subgroups that respond to treatment at a much higher (or lower) rate than the population average. Despite there being many subgroup identification methods, there is no comprehensive comparative study of their statistical properties. We review 13 methods and use real‐world and simulated data to compare the performance of their publicly available software using seven criteria: (a) bias in selection of subgroup variables, (b) probability of false discovery, (c) probability of identifying correct predictive variables, (d) bias in estimates of subgroup treatment effects, (e) expected subgroup size, (f) expected true treatment effect of subgroups, and (g) subgroup stability. The results show that many methods fare poorly on at least one criterion. This article is categorized under: Technologies &gt; Machine Learning Algorithmic Development &gt; Hierarchies and Trees Algorithmic Development &gt; Statistics Application Areas &gt; Health Care Subgroup (in green) for breast cancer data; sample sizes and estimated treatment effects (log relative risks) beside and below nodes</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1326</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Algorithms ; Bias ; Comparative studies ; Computer simulation ; Hierarchies ; Identification methods ; Machine learning ; Medicine ; personalized medicine ; Population (statistical) ; Precision medicine ; prognostic variable ; recursive partitioning ; regression trees ; Statistical analysis ; Subgroups ; tailored therapy</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2019-09, Vol.9 (5), p.e1326-n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-e6a8b2dad401b905728ae9586f8b49df32f74305ddd9fba6ae0514b534871363</citedby><cites>FETCH-LOGICAL-c2976-e6a8b2dad401b905728ae9586f8b49df32f74305ddd9fba6ae0514b534871363</cites><orcidid>0000-0001-6983-2495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwidm.1326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwidm.1326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Loh, Wei‐Yin</creatorcontrib><creatorcontrib>Cao, Luxi</creatorcontrib><creatorcontrib>Zhou, Peigen</creatorcontrib><title>Subgroup identification for precision medicine: A comparative review of 13 methods</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><description>Natural heterogeneity in patient populations can make it very hard to develop treatments that benefit all patients. As a result, an important goal of precision medicine is identification of patient subgroups that respond to treatment at a much higher (or lower) rate than the population average. Despite there being many subgroup identification methods, there is no comprehensive comparative study of their statistical properties. We review 13 methods and use real‐world and simulated data to compare the performance of their publicly available software using seven criteria: (a) bias in selection of subgroup variables, (b) probability of false discovery, (c) probability of identifying correct predictive variables, (d) bias in estimates of subgroup treatment effects, (e) expected subgroup size, (f) expected true treatment effect of subgroups, and (g) subgroup stability. The results show that many methods fare poorly on at least one criterion. This article is categorized under: Technologies &gt; Machine Learning Algorithmic Development &gt; Hierarchies and Trees Algorithmic Development &gt; Statistics Application Areas &gt; Health Care Subgroup (in green) for breast cancer data; sample sizes and estimated treatment effects (log relative risks) beside and below nodes</description><subject>Algorithms</subject><subject>Bias</subject><subject>Comparative studies</subject><subject>Computer simulation</subject><subject>Hierarchies</subject><subject>Identification methods</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>personalized medicine</subject><subject>Population (statistical)</subject><subject>Precision medicine</subject><subject>prognostic variable</subject><subject>recursive partitioning</subject><subject>regression trees</subject><subject>Statistical analysis</subject><subject>Subgroups</subject><subject>tailored therapy</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCo65g_9BwJOHbvnRNom3MZ0OJoIOPIa0STRjbWrSbuy_t3XizVxeHnzee_AF4BqjKUaIzA5OV1NMSX4GRlikJEmZyM7__pxdgkmMW9Q_SjjnZARe37riI_iugU6bunXWlap1vobWB9gEU7o4dJXRrnS1uYNzWPqqUaFXewOD2TtzgN5CTHvUfnodr8CFVbtoJr91DDbLh83iKVm_PK4W83VSEsHyxOSKF0QrnSJcCJQxwpURGc8tL1KhLSWWpRRlWmthC5UrgzKcFhlNOcM0p2Nwc1rbBP_VmdjKre9C3V-UhDCKBOMU9-r2pMrgYwzGyia4SoWjxEgOockhNDmE1tvZyR7czhz_h_J9df_8M_ENMa9uBA</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Loh, Wei‐Yin</creator><creator>Cao, Luxi</creator><creator>Zhou, Peigen</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6983-2495</orcidid></search><sort><creationdate>201909</creationdate><title>Subgroup identification for precision medicine: A comparative review of 13 methods</title><author>Loh, Wei‐Yin ; Cao, Luxi ; Zhou, Peigen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-e6a8b2dad401b905728ae9586f8b49df32f74305ddd9fba6ae0514b534871363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Comparative studies</topic><topic>Computer simulation</topic><topic>Hierarchies</topic><topic>Identification methods</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>personalized medicine</topic><topic>Population (statistical)</topic><topic>Precision medicine</topic><topic>prognostic variable</topic><topic>recursive partitioning</topic><topic>regression trees</topic><topic>Statistical analysis</topic><topic>Subgroups</topic><topic>tailored therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loh, Wei‐Yin</creatorcontrib><creatorcontrib>Cao, Luxi</creatorcontrib><creatorcontrib>Zhou, Peigen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loh, Wei‐Yin</au><au>Cao, Luxi</au><au>Zhou, Peigen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subgroup identification for precision medicine: A comparative review of 13 methods</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><date>2019-09</date><risdate>2019</risdate><volume>9</volume><issue>5</issue><spage>e1326</spage><epage>n/a</epage><pages>e1326-n/a</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Natural heterogeneity in patient populations can make it very hard to develop treatments that benefit all patients. As a result, an important goal of precision medicine is identification of patient subgroups that respond to treatment at a much higher (or lower) rate than the population average. Despite there being many subgroup identification methods, there is no comprehensive comparative study of their statistical properties. We review 13 methods and use real‐world and simulated data to compare the performance of their publicly available software using seven criteria: (a) bias in selection of subgroup variables, (b) probability of false discovery, (c) probability of identifying correct predictive variables, (d) bias in estimates of subgroup treatment effects, (e) expected subgroup size, (f) expected true treatment effect of subgroups, and (g) subgroup stability. The results show that many methods fare poorly on at least one criterion. This article is categorized under: Technologies &gt; Machine Learning Algorithmic Development &gt; Hierarchies and Trees Algorithmic Development &gt; Statistics Application Areas &gt; Health Care Subgroup (in green) for breast cancer data; sample sizes and estimated treatment effects (log relative risks) beside and below nodes</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/widm.1326</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6983-2495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1942-4787
ispartof Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2019-09, Vol.9 (5), p.e1326-n/a
issn 1942-4787
1942-4795
language eng
recordid cdi_proquest_journals_2273097831
source Wiley Online Library All Journals
subjects Algorithms
Bias
Comparative studies
Computer simulation
Hierarchies
Identification methods
Machine learning
Medicine
personalized medicine
Population (statistical)
Precision medicine
prognostic variable
recursive partitioning
regression trees
Statistical analysis
Subgroups
tailored therapy
title Subgroup identification for precision medicine: A comparative review of 13 methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subgroup%20identification%20for%20precision%20medicine:%20A%20comparative%20review%20of%2013%20methods&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Loh,%20Wei%E2%80%90Yin&rft.date=2019-09&rft.volume=9&rft.issue=5&rft.spage=e1326&rft.epage=n/a&rft.pages=e1326-n/a&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1326&rft_dat=%3Cproquest_cross%3E2273097831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273097831&rft_id=info:pmid/&rfr_iscdi=true