The Product Formula and Evolution Families of Nonexpansive Mappings

In this work we obtain a product formula type for a two-parameters commuting family of nonexpansive mappings on D . This is established by following the techniques used by Simeon Reich and David Shoikhet in the study of one-parameter semigroups of holomorphic and nonexpansive self-mappings in D . Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2019-09, Vol.50 (3), p.625-644
Hauptverfasser: Benítez-Babilonia, Luis, López, Nancy, Felipe, Raúl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 644
container_issue 3
container_start_page 625
container_title Boletim da Sociedade Brasileira de Matemática
container_volume 50
creator Benítez-Babilonia, Luis
López, Nancy
Felipe, Raúl
description In this work we obtain a product formula type for a two-parameters commuting family of nonexpansive mappings on D . This is established by following the techniques used by Simeon Reich and David Shoikhet in the study of one-parameter semigroups of holomorphic and nonexpansive self-mappings in D . Also, we stablish such a formula for the family of non-linear resolvent of a strongly ρ -monotone functions on D and its relation with evolution families of nonexpansive mappings on D . It is worthy mentioning that the product formula is linked with semigroup of linear and nonlinear operators. Also it is associated with the study of vector fields and flows, but in the literature it is established a product formula for time independent flow.
doi_str_mv 10.1007/s00574-018-0118-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272762229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272762229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7c42bdd436ed900caf78e980bd7429c377853e76faf96b019c160f4059020b1f3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEuXyAGyWmAPHjmPHI6paQCqXocyW49glVRoHO6ng7XEVEBPDuQz_RfoQuiJwQwDEbQQoBMuAlGnSYkdoRrgoMyEIO_79C8ZO0VmMWwDgRZHP0Hz9bvFr8PVoBrz0YTe2Guuuxou9b8eh8R1e6l3TNjZi7_Cz7-xnr7vY7C1-0n3fdJt4gU6cbqO9_Lnn6G25WM8fstXL_eP8bpWZnPAhE4bRqq5Zzm0tAYx2orSyhKoWjEqTC1EWuRXcaSd5BUQawsExKCRQqIjLz9H1lNsH_zHaOKitH0OXKhWlggpOKZVJRSaVCT7GYJ3qQ7PT4UsRUAdWamKlEit1YKVY8tDJE5O229jwl_y_6RvhV2sD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272762229</pqid></control><display><type>article</type><title>The Product Formula and Evolution Families of Nonexpansive Mappings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Benítez-Babilonia, Luis ; López, Nancy ; Felipe, Raúl</creator><creatorcontrib>Benítez-Babilonia, Luis ; López, Nancy ; Felipe, Raúl</creatorcontrib><description>In this work we obtain a product formula type for a two-parameters commuting family of nonexpansive mappings on D . This is established by following the techniques used by Simeon Reich and David Shoikhet in the study of one-parameter semigroups of holomorphic and nonexpansive self-mappings in D . Also, we stablish such a formula for the family of non-linear resolvent of a strongly ρ -monotone functions on D and its relation with evolution families of nonexpansive mappings on D . It is worthy mentioning that the product formula is linked with semigroup of linear and nonlinear operators. Also it is associated with the study of vector fields and flows, but in the literature it is established a product formula for time independent flow.</description><identifier>ISSN: 1678-7544</identifier><identifier>EISSN: 1678-7714</identifier><identifier>DOI: 10.1007/s00574-018-0118-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Evolution ; Fields (mathematics) ; Labeling ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Monotone functions ; Operators (mathematics) ; Parameters ; Theoretical</subject><ispartof>Boletim da Sociedade Brasileira de Matemática, 2019-09, Vol.50 (3), p.625-644</ispartof><rights>Sociedade Brasileira de Matemática 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7c42bdd436ed900caf78e980bd7429c377853e76faf96b019c160f4059020b1f3</citedby><cites>FETCH-LOGICAL-c316t-7c42bdd436ed900caf78e980bd7429c377853e76faf96b019c160f4059020b1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00574-018-0118-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00574-018-0118-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Benítez-Babilonia, Luis</creatorcontrib><creatorcontrib>López, Nancy</creatorcontrib><creatorcontrib>Felipe, Raúl</creatorcontrib><title>The Product Formula and Evolution Families of Nonexpansive Mappings</title><title>Boletim da Sociedade Brasileira de Matemática</title><addtitle>Bull Braz Math Soc, New Series</addtitle><description>In this work we obtain a product formula type for a two-parameters commuting family of nonexpansive mappings on D . This is established by following the techniques used by Simeon Reich and David Shoikhet in the study of one-parameter semigroups of holomorphic and nonexpansive self-mappings in D . Also, we stablish such a formula for the family of non-linear resolvent of a strongly ρ -monotone functions on D and its relation with evolution families of nonexpansive mappings on D . It is worthy mentioning that the product formula is linked with semigroup of linear and nonlinear operators. Also it is associated with the study of vector fields and flows, but in the literature it is established a product formula for time independent flow.</description><subject>Evolution</subject><subject>Fields (mathematics)</subject><subject>Labeling</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monotone functions</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Theoretical</subject><issn>1678-7544</issn><issn>1678-7714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEuXyAGyWmAPHjmPHI6paQCqXocyW49glVRoHO6ng7XEVEBPDuQz_RfoQuiJwQwDEbQQoBMuAlGnSYkdoRrgoMyEIO_79C8ZO0VmMWwDgRZHP0Hz9bvFr8PVoBrz0YTe2Guuuxou9b8eh8R1e6l3TNjZi7_Cz7-xnr7vY7C1-0n3fdJt4gU6cbqO9_Lnn6G25WM8fstXL_eP8bpWZnPAhE4bRqq5Zzm0tAYx2orSyhKoWjEqTC1EWuRXcaSd5BUQawsExKCRQqIjLz9H1lNsH_zHaOKitH0OXKhWlggpOKZVJRSaVCT7GYJ3qQ7PT4UsRUAdWamKlEit1YKVY8tDJE5O229jwl_y_6RvhV2sD</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Benítez-Babilonia, Luis</creator><creator>López, Nancy</creator><creator>Felipe, Raúl</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190910</creationdate><title>The Product Formula and Evolution Families of Nonexpansive Mappings</title><author>Benítez-Babilonia, Luis ; López, Nancy ; Felipe, Raúl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7c42bdd436ed900caf78e980bd7429c377853e76faf96b019c160f4059020b1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Evolution</topic><topic>Fields (mathematics)</topic><topic>Labeling</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monotone functions</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benítez-Babilonia, Luis</creatorcontrib><creatorcontrib>López, Nancy</creatorcontrib><creatorcontrib>Felipe, Raúl</creatorcontrib><collection>CrossRef</collection><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benítez-Babilonia, Luis</au><au>López, Nancy</au><au>Felipe, Raúl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Product Formula and Evolution Families of Nonexpansive Mappings</atitle><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle><stitle>Bull Braz Math Soc, New Series</stitle><date>2019-09-10</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>625</spage><epage>644</epage><pages>625-644</pages><issn>1678-7544</issn><eissn>1678-7714</eissn><abstract>In this work we obtain a product formula type for a two-parameters commuting family of nonexpansive mappings on D . This is established by following the techniques used by Simeon Reich and David Shoikhet in the study of one-parameter semigroups of holomorphic and nonexpansive self-mappings in D . Also, we stablish such a formula for the family of non-linear resolvent of a strongly ρ -monotone functions on D and its relation with evolution families of nonexpansive mappings on D . It is worthy mentioning that the product formula is linked with semigroup of linear and nonlinear operators. Also it is associated with the study of vector fields and flows, but in the literature it is established a product formula for time independent flow.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00574-018-0118-4</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1678-7544
ispartof Boletim da Sociedade Brasileira de Matemática, 2019-09, Vol.50 (3), p.625-644
issn 1678-7544
1678-7714
language eng
recordid cdi_proquest_journals_2272762229
source SpringerLink Journals - AutoHoldings
subjects Evolution
Fields (mathematics)
Labeling
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Monotone functions
Operators (mathematics)
Parameters
Theoretical
title The Product Formula and Evolution Families of Nonexpansive Mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Product%20Formula%20and%20Evolution%20Families%20of%20Nonexpansive%20Mappings&rft.jtitle=Boletim%20da%20Sociedade%20Brasileira%20de%20Matem%C3%A1tica&rft.au=Ben%C3%ADtez-Babilonia,%20Luis&rft.date=2019-09-10&rft.volume=50&rft.issue=3&rft.spage=625&rft.epage=644&rft.pages=625-644&rft.issn=1678-7544&rft.eissn=1678-7714&rft_id=info:doi/10.1007/s00574-018-0118-4&rft_dat=%3Cproquest_cross%3E2272762229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272762229&rft_id=info:pmid/&rfr_iscdi=true