Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization

The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2019-12, Vol.50, p.603-612
1. Verfasser: Pankov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 612
container_issue
container_start_page 603
container_title Nonlinear analysis: real world applications
container_volume 50
creator Pankov, Alexander
description The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and exponentially weighted spaces of functions to prove the localization of solitary waves.
doi_str_mv 10.1016/j.nonrwa.2019.06.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272728451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121819304857</els_id><sourcerecordid>2272728451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-eaf7498a130dcc474bd9a34b6dbf57a980d06999570d530169d1b57741c4cd0d3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAxaRWCd4EieOWSChqgWkSiCga8uxHclRGhfbbYEVd-CGnASXskazmFn8_0f_IXQOOAMM1WWXDXZwW5HlGFiGqwxjeoBGUNM6LSmww3iTqk4hh_oYnXjfYQwUChihp2fbmyDce7IVG-0TOyQxq7dS9MlMu6X5_vx6FD6IuBe9WCa9CMFI7a-S6dvKDnoIJkp_DeZDBGOHU3TUit7rs789RovZ9GVyl84fbu8nN_NUFgUJqRYtJawWUGAlJaGkUUwUpKlU05ZUsBorXDHGSopVWcSaTEFTUkpAEqmwKsboYp-7cvZ1rX3gnV27Ib7keU7j1KSEqCJ7lXTWe6dbvnJmGQtzwHxHj3d8T4_v6HFc8Ugv2q73Nh0bbIx23EujB6mVcVoGrqz5P-AHLpN88Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272728451</pqid></control><display><type>article</type><title>Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization</title><source>Elsevier ScienceDirect Journals</source><creator>Pankov, Alexander</creator><creatorcontrib>Pankov, Alexander</creatorcontrib><description>The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and exponentially weighted spaces of functions to prove the localization of solitary waves.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2019.06.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Eigenvalues ; Exponential localization ; Fermi–Pasta–Ulam lattice ; Functional analysis ; Lattices (mathematics) ; Localization ; Nonlocal interaction ; Operators (mathematics) ; Solitary wave ; Solitary waves ; Traveling waves</subject><ispartof>Nonlinear analysis: real world applications, 2019-12, Vol.50, p.603-612</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-eaf7498a130dcc474bd9a34b6dbf57a980d06999570d530169d1b57741c4cd0d3</citedby><cites>FETCH-LOGICAL-c334t-eaf7498a130dcc474bd9a34b6dbf57a980d06999570d530169d1b57741c4cd0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nonrwa.2019.06.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Pankov, Alexander</creatorcontrib><title>Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization</title><title>Nonlinear analysis: real world applications</title><description>The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and exponentially weighted spaces of functions to prove the localization of solitary waves.</description><subject>Eigenvalues</subject><subject>Exponential localization</subject><subject>Fermi–Pasta–Ulam lattice</subject><subject>Functional analysis</subject><subject>Lattices (mathematics)</subject><subject>Localization</subject><subject>Nonlocal interaction</subject><subject>Operators (mathematics)</subject><subject>Solitary wave</subject><subject>Solitary waves</subject><subject>Traveling waves</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAxaRWCd4EieOWSChqgWkSiCga8uxHclRGhfbbYEVd-CGnASXskazmFn8_0f_IXQOOAMM1WWXDXZwW5HlGFiGqwxjeoBGUNM6LSmww3iTqk4hh_oYnXjfYQwUChihp2fbmyDce7IVG-0TOyQxq7dS9MlMu6X5_vx6FD6IuBe9WCa9CMFI7a-S6dvKDnoIJkp_DeZDBGOHU3TUit7rs789RovZ9GVyl84fbu8nN_NUFgUJqRYtJawWUGAlJaGkUUwUpKlU05ZUsBorXDHGSopVWcSaTEFTUkpAEqmwKsboYp-7cvZ1rX3gnV27Ib7keU7j1KSEqCJ7lXTWe6dbvnJmGQtzwHxHj3d8T4_v6HFc8Ugv2q73Nh0bbIx23EujB6mVcVoGrqz5P-AHLpN88Q</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Pankov, Alexander</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201912</creationdate><title>Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization</title><author>Pankov, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-eaf7498a130dcc474bd9a34b6dbf57a980d06999570d530169d1b57741c4cd0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Eigenvalues</topic><topic>Exponential localization</topic><topic>Fermi–Pasta–Ulam lattice</topic><topic>Functional analysis</topic><topic>Lattices (mathematics)</topic><topic>Localization</topic><topic>Nonlocal interaction</topic><topic>Operators (mathematics)</topic><topic>Solitary wave</topic><topic>Solitary waves</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pankov, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pankov, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2019-12</date><risdate>2019</risdate><volume>50</volume><spage>603</spage><epage>612</epage><pages>603-612</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and exponentially weighted spaces of functions to prove the localization of solitary waves.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2019.06.007</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2019-12, Vol.50, p.603-612
issn 1468-1218
1878-5719
language eng
recordid cdi_proquest_journals_2272728451
source Elsevier ScienceDirect Journals
subjects Eigenvalues
Exponential localization
Fermi–Pasta–Ulam lattice
Functional analysis
Lattices (mathematics)
Localization
Nonlocal interaction
Operators (mathematics)
Solitary wave
Solitary waves
Traveling waves
title Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solitary%20waves%20on%20nonlocal%20Fermi%E2%80%93Pasta%E2%80%93Ulam%20lattices:%20Exponential%20localization&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Pankov,%20Alexander&rft.date=2019-12&rft.volume=50&rft.spage=603&rft.epage=612&rft.pages=603-612&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2019.06.007&rft_dat=%3Cproquest_cross%3E2272728451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272728451&rft_id=info:pmid/&rft_els_id=S1468121819304857&rfr_iscdi=true