Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization
The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2019-12, Vol.50, p.603-612 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 612 |
---|---|
container_issue | |
container_start_page | 603 |
container_title | Nonlinear analysis: real world applications |
container_volume | 50 |
creator | Pankov, Alexander |
description | The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and exponentially weighted spaces of functions to prove the localization of solitary waves. |
doi_str_mv | 10.1016/j.nonrwa.2019.06.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272728451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121819304857</els_id><sourcerecordid>2272728451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-eaf7498a130dcc474bd9a34b6dbf57a980d06999570d530169d1b57741c4cd0d3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAxaRWCd4EieOWSChqgWkSiCga8uxHclRGhfbbYEVd-CGnASXskazmFn8_0f_IXQOOAMM1WWXDXZwW5HlGFiGqwxjeoBGUNM6LSmww3iTqk4hh_oYnXjfYQwUChihp2fbmyDce7IVG-0TOyQxq7dS9MlMu6X5_vx6FD6IuBe9WCa9CMFI7a-S6dvKDnoIJkp_DeZDBGOHU3TUit7rs789RovZ9GVyl84fbu8nN_NUFgUJqRYtJawWUGAlJaGkUUwUpKlU05ZUsBorXDHGSopVWcSaTEFTUkpAEqmwKsboYp-7cvZ1rX3gnV27Ib7keU7j1KSEqCJ7lXTWe6dbvnJmGQtzwHxHj3d8T4_v6HFc8Ugv2q73Nh0bbIx23EujB6mVcVoGrqz5P-AHLpN88Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272728451</pqid></control><display><type>article</type><title>Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization</title><source>Elsevier ScienceDirect Journals</source><creator>Pankov, Alexander</creator><creatorcontrib>Pankov, Alexander</creatorcontrib><description>The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and exponentially weighted spaces of functions to prove the localization of solitary waves.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2019.06.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Eigenvalues ; Exponential localization ; Fermi–Pasta–Ulam lattice ; Functional analysis ; Lattices (mathematics) ; Localization ; Nonlocal interaction ; Operators (mathematics) ; Solitary wave ; Solitary waves ; Traveling waves</subject><ispartof>Nonlinear analysis: real world applications, 2019-12, Vol.50, p.603-612</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-eaf7498a130dcc474bd9a34b6dbf57a980d06999570d530169d1b57741c4cd0d3</citedby><cites>FETCH-LOGICAL-c334t-eaf7498a130dcc474bd9a34b6dbf57a980d06999570d530169d1b57741c4cd0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nonrwa.2019.06.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Pankov, Alexander</creatorcontrib><title>Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization</title><title>Nonlinear analysis: real world applications</title><description>The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and exponentially weighted spaces of functions to prove the localization of solitary waves.</description><subject>Eigenvalues</subject><subject>Exponential localization</subject><subject>Fermi–Pasta–Ulam lattice</subject><subject>Functional analysis</subject><subject>Lattices (mathematics)</subject><subject>Localization</subject><subject>Nonlocal interaction</subject><subject>Operators (mathematics)</subject><subject>Solitary wave</subject><subject>Solitary waves</subject><subject>Traveling waves</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAxaRWCd4EieOWSChqgWkSiCga8uxHclRGhfbbYEVd-CGnASXskazmFn8_0f_IXQOOAMM1WWXDXZwW5HlGFiGqwxjeoBGUNM6LSmww3iTqk4hh_oYnXjfYQwUChihp2fbmyDce7IVG-0TOyQxq7dS9MlMu6X5_vx6FD6IuBe9WCa9CMFI7a-S6dvKDnoIJkp_DeZDBGOHU3TUit7rs789RovZ9GVyl84fbu8nN_NUFgUJqRYtJawWUGAlJaGkUUwUpKlU05ZUsBorXDHGSopVWcSaTEFTUkpAEqmwKsboYp-7cvZ1rX3gnV27Ib7keU7j1KSEqCJ7lXTWe6dbvnJmGQtzwHxHj3d8T4_v6HFc8Ugv2q73Nh0bbIx23EujB6mVcVoGrqz5P-AHLpN88Q</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Pankov, Alexander</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201912</creationdate><title>Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization</title><author>Pankov, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-eaf7498a130dcc474bd9a34b6dbf57a980d06999570d530169d1b57741c4cd0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Eigenvalues</topic><topic>Exponential localization</topic><topic>Fermi–Pasta–Ulam lattice</topic><topic>Functional analysis</topic><topic>Lattices (mathematics)</topic><topic>Localization</topic><topic>Nonlocal interaction</topic><topic>Operators (mathematics)</topic><topic>Solitary wave</topic><topic>Solitary waves</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pankov, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pankov, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2019-12</date><risdate>2019</risdate><volume>50</volume><spage>603</spage><epage>612</epage><pages>603-612</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>The paper is devoted to Fermi–Pasta–Ulam lattices with nonlocal interaction. Under natural assumptions we show that all solitary traveling waves are exponentially localized. We reduce the problem to a linear eigenvalue problem for certain integral operator. Then we use functional analysis tools and exponentially weighted spaces of functions to prove the localization of solitary waves.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2019.06.007</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2019-12, Vol.50, p.603-612 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_proquest_journals_2272728451 |
source | Elsevier ScienceDirect Journals |
subjects | Eigenvalues Exponential localization Fermi–Pasta–Ulam lattice Functional analysis Lattices (mathematics) Localization Nonlocal interaction Operators (mathematics) Solitary wave Solitary waves Traveling waves |
title | Solitary waves on nonlocal Fermi–Pasta–Ulam lattices: Exponential localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solitary%20waves%20on%20nonlocal%20Fermi%E2%80%93Pasta%E2%80%93Ulam%20lattices:%20Exponential%20localization&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Pankov,%20Alexander&rft.date=2019-12&rft.volume=50&rft.spage=603&rft.epage=612&rft.pages=603-612&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2019.06.007&rft_dat=%3Cproquest_cross%3E2272728451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272728451&rft_id=info:pmid/&rft_els_id=S1468121819304857&rfr_iscdi=true |