Quantum paramagnetism and helimagnetic orders in the Heisenberg model on the body centered cubic lattice

We investigate the spin S=1/2 Heisenberg model on the body centered cubic lattice in the presence of ferromagnetic and antiferromagnetic nearest-neighbor J1, second-neighbor J2, and third-neighbor J3 exchange interactions. The classical ground state phase diagram obtained by a Luttinger-Tisza analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-07, Vol.100 (1), p.014420, Article 014420
Hauptverfasser: Ghosh, Pratyay, Müller, Tobias, Toldin, Francesco Parisen, Richter, Johannes, Narayanan, Rajesh, Thomale, Ronny, Reuther, Johannes, Iqbal, Yasir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 014420
container_title Physical review. B
container_volume 100
creator Ghosh, Pratyay
Müller, Tobias
Toldin, Francesco Parisen
Richter, Johannes
Narayanan, Rajesh
Thomale, Ronny
Reuther, Johannes
Iqbal, Yasir
description We investigate the spin S=1/2 Heisenberg model on the body centered cubic lattice in the presence of ferromagnetic and antiferromagnetic nearest-neighbor J1, second-neighbor J2, and third-neighbor J3 exchange interactions. The classical ground state phase diagram obtained by a Luttinger-Tisza analysis is shown to host six different (noncollinear) helimagnetic orders in addition to ferromagnetic, Néel, stripe, and planar antiferromagnetic orders. Employing the pseudofermion functional renormalization group (PFFRG) method for quantum spins (S=1/2) we find an extended nonmagnetic region, and significant shifts to the classical phase boundaries and helimagnetic pitch vectors caused by quantum fluctuations, while no new long-range dipolar magnetic orders are stabilized. The nonmagnetic phase is found to disappear for S=1. We calculate the magnetic ordering temperatures from PFFRG and quantum Monte Carlo methods, and make comparisons to available data.
doi_str_mv 10.1103/PhysRevB.100.014420
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272725342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272725342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cb7943ec177dcd7391e910dbc8ffb8aecd06f72f1347a314252b63bc957884d43</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsNT-Al8WfE6dvSSbfdSiVih4QZ_DXiZNSpPU3UTovzeSKvMww8eZM8wh5JrBkjEQt6_VMb7j9_2SASyBScnhjMy4zHSidabP_-cULskixh0AsAy0Aj0j1dtg2n5o6MEE05hti30dG2paTyvc1yfiaBc8hkjrlvYV0jXWEVuLYUubzuOedhO3nT9Sh22PAT11gx0396YfDfCKXJRmH3Fx6nPy-fjwsVonm5en59XdJnFCij5xVmkp0DGlvPNKaIaagbcuL0ubG3QeslLxkgmpjGCSp9xmwjqdqjyXXoo5uZl8D6H7GjD2xa4bQjueLDhXY6VC8lElJpULXYwBy-IQxmfDsWBQ_KZa_KU6AiimVMUP1O9tkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272725342</pqid></control><display><type>article</type><title>Quantum paramagnetism and helimagnetic orders in the Heisenberg model on the body centered cubic lattice</title><source>American Physical Society Journals</source><creator>Ghosh, Pratyay ; Müller, Tobias ; Toldin, Francesco Parisen ; Richter, Johannes ; Narayanan, Rajesh ; Thomale, Ronny ; Reuther, Johannes ; Iqbal, Yasir</creator><creatorcontrib>Ghosh, Pratyay ; Müller, Tobias ; Toldin, Francesco Parisen ; Richter, Johannes ; Narayanan, Rajesh ; Thomale, Ronny ; Reuther, Johannes ; Iqbal, Yasir</creatorcontrib><description>We investigate the spin S=1/2 Heisenberg model on the body centered cubic lattice in the presence of ferromagnetic and antiferromagnetic nearest-neighbor J1, second-neighbor J2, and third-neighbor J3 exchange interactions. The classical ground state phase diagram obtained by a Luttinger-Tisza analysis is shown to host six different (noncollinear) helimagnetic orders in addition to ferromagnetic, Néel, stripe, and planar antiferromagnetic orders. Employing the pseudofermion functional renormalization group (PFFRG) method for quantum spins (S=1/2) we find an extended nonmagnetic region, and significant shifts to the classical phase boundaries and helimagnetic pitch vectors caused by quantum fluctuations, while no new long-range dipolar magnetic orders are stabilized. The nonmagnetic phase is found to disappear for S=1. We calculate the magnetic ordering temperatures from PFFRG and quantum Monte Carlo methods, and make comparisons to available data.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.014420</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Antiferromagnetism ; Body centered cubic lattice ; Computer simulation ; Ferromagnetism ; Heisenberg theory ; Monte Carlo simulation ; Paramagnetism ; Phase diagrams ; Quantum phenomena ; Statistical models</subject><ispartof>Physical review. B, 2019-07, Vol.100 (1), p.014420, Article 014420</ispartof><rights>Copyright American Physical Society Jul 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-cb7943ec177dcd7391e910dbc8ffb8aecd06f72f1347a314252b63bc957884d43</citedby><cites>FETCH-LOGICAL-c343t-cb7943ec177dcd7391e910dbc8ffb8aecd06f72f1347a314252b63bc957884d43</cites><orcidid>0000-0003-0936-8947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghosh, Pratyay</creatorcontrib><creatorcontrib>Müller, Tobias</creatorcontrib><creatorcontrib>Toldin, Francesco Parisen</creatorcontrib><creatorcontrib>Richter, Johannes</creatorcontrib><creatorcontrib>Narayanan, Rajesh</creatorcontrib><creatorcontrib>Thomale, Ronny</creatorcontrib><creatorcontrib>Reuther, Johannes</creatorcontrib><creatorcontrib>Iqbal, Yasir</creatorcontrib><title>Quantum paramagnetism and helimagnetic orders in the Heisenberg model on the body centered cubic lattice</title><title>Physical review. B</title><description>We investigate the spin S=1/2 Heisenberg model on the body centered cubic lattice in the presence of ferromagnetic and antiferromagnetic nearest-neighbor J1, second-neighbor J2, and third-neighbor J3 exchange interactions. The classical ground state phase diagram obtained by a Luttinger-Tisza analysis is shown to host six different (noncollinear) helimagnetic orders in addition to ferromagnetic, Néel, stripe, and planar antiferromagnetic orders. Employing the pseudofermion functional renormalization group (PFFRG) method for quantum spins (S=1/2) we find an extended nonmagnetic region, and significant shifts to the classical phase boundaries and helimagnetic pitch vectors caused by quantum fluctuations, while no new long-range dipolar magnetic orders are stabilized. The nonmagnetic phase is found to disappear for S=1. We calculate the magnetic ordering temperatures from PFFRG and quantum Monte Carlo methods, and make comparisons to available data.</description><subject>Antiferromagnetism</subject><subject>Body centered cubic lattice</subject><subject>Computer simulation</subject><subject>Ferromagnetism</subject><subject>Heisenberg theory</subject><subject>Monte Carlo simulation</subject><subject>Paramagnetism</subject><subject>Phase diagrams</subject><subject>Quantum phenomena</subject><subject>Statistical models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRsNT-Al8WfE6dvSSbfdSiVih4QZ_DXiZNSpPU3UTovzeSKvMww8eZM8wh5JrBkjEQt6_VMb7j9_2SASyBScnhjMy4zHSidabP_-cULskixh0AsAy0Aj0j1dtg2n5o6MEE05hti30dG2paTyvc1yfiaBc8hkjrlvYV0jXWEVuLYUubzuOedhO3nT9Sh22PAT11gx0396YfDfCKXJRmH3Fx6nPy-fjwsVonm5en59XdJnFCij5xVmkp0DGlvPNKaIaagbcuL0ubG3QeslLxkgmpjGCSp9xmwjqdqjyXXoo5uZl8D6H7GjD2xa4bQjueLDhXY6VC8lElJpULXYwBy-IQxmfDsWBQ_KZa_KU6AiimVMUP1O9tkw</recordid><startdate>20190716</startdate><enddate>20190716</enddate><creator>Ghosh, Pratyay</creator><creator>Müller, Tobias</creator><creator>Toldin, Francesco Parisen</creator><creator>Richter, Johannes</creator><creator>Narayanan, Rajesh</creator><creator>Thomale, Ronny</creator><creator>Reuther, Johannes</creator><creator>Iqbal, Yasir</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0936-8947</orcidid></search><sort><creationdate>20190716</creationdate><title>Quantum paramagnetism and helimagnetic orders in the Heisenberg model on the body centered cubic lattice</title><author>Ghosh, Pratyay ; Müller, Tobias ; Toldin, Francesco Parisen ; Richter, Johannes ; Narayanan, Rajesh ; Thomale, Ronny ; Reuther, Johannes ; Iqbal, Yasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cb7943ec177dcd7391e910dbc8ffb8aecd06f72f1347a314252b63bc957884d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Body centered cubic lattice</topic><topic>Computer simulation</topic><topic>Ferromagnetism</topic><topic>Heisenberg theory</topic><topic>Monte Carlo simulation</topic><topic>Paramagnetism</topic><topic>Phase diagrams</topic><topic>Quantum phenomena</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Pratyay</creatorcontrib><creatorcontrib>Müller, Tobias</creatorcontrib><creatorcontrib>Toldin, Francesco Parisen</creatorcontrib><creatorcontrib>Richter, Johannes</creatorcontrib><creatorcontrib>Narayanan, Rajesh</creatorcontrib><creatorcontrib>Thomale, Ronny</creatorcontrib><creatorcontrib>Reuther, Johannes</creatorcontrib><creatorcontrib>Iqbal, Yasir</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Pratyay</au><au>Müller, Tobias</au><au>Toldin, Francesco Parisen</au><au>Richter, Johannes</au><au>Narayanan, Rajesh</au><au>Thomale, Ronny</au><au>Reuther, Johannes</au><au>Iqbal, Yasir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum paramagnetism and helimagnetic orders in the Heisenberg model on the body centered cubic lattice</atitle><jtitle>Physical review. B</jtitle><date>2019-07-16</date><risdate>2019</risdate><volume>100</volume><issue>1</issue><spage>014420</spage><pages>014420-</pages><artnum>014420</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We investigate the spin S=1/2 Heisenberg model on the body centered cubic lattice in the presence of ferromagnetic and antiferromagnetic nearest-neighbor J1, second-neighbor J2, and third-neighbor J3 exchange interactions. The classical ground state phase diagram obtained by a Luttinger-Tisza analysis is shown to host six different (noncollinear) helimagnetic orders in addition to ferromagnetic, Néel, stripe, and planar antiferromagnetic orders. Employing the pseudofermion functional renormalization group (PFFRG) method for quantum spins (S=1/2) we find an extended nonmagnetic region, and significant shifts to the classical phase boundaries and helimagnetic pitch vectors caused by quantum fluctuations, while no new long-range dipolar magnetic orders are stabilized. The nonmagnetic phase is found to disappear for S=1. We calculate the magnetic ordering temperatures from PFFRG and quantum Monte Carlo methods, and make comparisons to available data.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.014420</doi><orcidid>https://orcid.org/0000-0003-0936-8947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-07, Vol.100 (1), p.014420, Article 014420
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2272725342
source American Physical Society Journals
subjects Antiferromagnetism
Body centered cubic lattice
Computer simulation
Ferromagnetism
Heisenberg theory
Monte Carlo simulation
Paramagnetism
Phase diagrams
Quantum phenomena
Statistical models
title Quantum paramagnetism and helimagnetic orders in the Heisenberg model on the body centered cubic lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20paramagnetism%20and%20helimagnetic%20orders%20in%20the%20Heisenberg%20model%20on%20the%20body%20centered%20cubic%20lattice&rft.jtitle=Physical%20review.%20B&rft.au=Ghosh,%20Pratyay&rft.date=2019-07-16&rft.volume=100&rft.issue=1&rft.spage=014420&rft.pages=014420-&rft.artnum=014420&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.014420&rft_dat=%3Cproquest_cross%3E2272725342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272725342&rft_id=info:pmid/&rfr_iscdi=true