Multi‐representational convolutional neural networks for text classification

Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2019-08, Vol.35 (3), p.599-609
Hauptverfasser: Jin, Rize, Lu, Liangfu, Lee, Joomin, Usman, Anwar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue 3
container_start_page 599
container_title Computational intelligence
container_volume 35
creator Jin, Rize
Lu, Liangfu
Lee, Joomin
Usman, Anwar
description Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear guidance on some aspects of their use, including choosing the proper level of embedding and switching word semantics from one domain to another when appropriate. In this paper, we propose a new architecture of CNN based on multiple representations for text classification, by constructing multiple planes so that more information can be dumped into the networks, such as different parts of text obtained through named entity recognizer or part‐of‐speech tagging tools, different levels of text embedding, or contextual sentences. Various large‐scale, domain‐specific datasets are used to validate the proposed architecture. Tasks analyzed include ontology document classification, biomedical event categorization, and sentiment analysis, showing that multi‐representational CNNs, which learns to focus attention to specific representations of text, can obtain further gains in performance over state‐of‐the‐art deep neural network models.
doi_str_mv 10.1111/coin.12225
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272631990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272631990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-4ec7764997246f3ff0f05570aa3f57689859b6a6503048e933bfc8d0b7c2f0fa3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsisUNKGb_jJap4VCrtBtaWY2wpJcTFTijd8Ql8I19C2nTNbK5GOnc0OghdYpjgfm5sqJoJJoTwIzTCTMi8EAyO0QgKwnKpKD9FZymtAABTVozQ4qmr2-r3-ye6dXTJNa1pq9CYOrOh-Qx1d9ga18V9tJsQ31LmQ8xa99VmtjYpVb6y-945OvGmTu7ikGP0cn_3PH3M58uH2fR2nlsKmOfMWSkFU0oSJjz1HjxwLsEY6rkUhSq4KoURHCiwwilKS2-LVyilJT1r6BhdDXfXMXx0LrV6FbrYP5o0IZIIipWCnroeKBtDStF5vY7Vu4lbjUHvfOmdL7331cN4gDdV7bb_kHq6nC2Gzh_PyG81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272631990</pqid></control><display><type>article</type><title>Multi‐representational convolutional neural networks for text classification</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Jin, Rize ; Lu, Liangfu ; Lee, Joomin ; Usman, Anwar</creator><creatorcontrib>Jin, Rize ; Lu, Liangfu ; Lee, Joomin ; Usman, Anwar</creatorcontrib><description>Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear guidance on some aspects of their use, including choosing the proper level of embedding and switching word semantics from one domain to another when appropriate. In this paper, we propose a new architecture of CNN based on multiple representations for text classification, by constructing multiple planes so that more information can be dumped into the networks, such as different parts of text obtained through named entity recognizer or part‐of‐speech tagging tools, different levels of text embedding, or contextual sentences. Various large‐scale, domain‐specific datasets are used to validate the proposed architecture. Tasks analyzed include ontology document classification, biomedical event categorization, and sentiment analysis, showing that multi‐representational CNNs, which learns to focus attention to specific representations of text, can obtain further gains in performance over state‐of‐the‐art deep neural network models.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12225</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Architecture ; Artificial neural networks ; Classification ; Construction planning ; convolutional neural networks ; Data mining ; Embedding ; Levels ; multi‐representational architecture ; Neural networks ; Representations ; Semantics ; Switching theory ; Text categorization ; text classification ; Words (language)</subject><ispartof>Computational intelligence, 2019-08, Vol.35 (3), p.599-609</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3015-4ec7764997246f3ff0f05570aa3f57689859b6a6503048e933bfc8d0b7c2f0fa3</citedby><cites>FETCH-LOGICAL-c3015-4ec7764997246f3ff0f05570aa3f57689859b6a6503048e933bfc8d0b7c2f0fa3</cites><orcidid>0000-0001-5537-0744 ; 0000-0001-8731-9775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12225$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12225$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jin, Rize</creatorcontrib><creatorcontrib>Lu, Liangfu</creatorcontrib><creatorcontrib>Lee, Joomin</creatorcontrib><creatorcontrib>Usman, Anwar</creatorcontrib><title>Multi‐representational convolutional neural networks for text classification</title><title>Computational intelligence</title><description>Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear guidance on some aspects of their use, including choosing the proper level of embedding and switching word semantics from one domain to another when appropriate. In this paper, we propose a new architecture of CNN based on multiple representations for text classification, by constructing multiple planes so that more information can be dumped into the networks, such as different parts of text obtained through named entity recognizer or part‐of‐speech tagging tools, different levels of text embedding, or contextual sentences. Various large‐scale, domain‐specific datasets are used to validate the proposed architecture. Tasks analyzed include ontology document classification, biomedical event categorization, and sentiment analysis, showing that multi‐representational CNNs, which learns to focus attention to specific representations of text, can obtain further gains in performance over state‐of‐the‐art deep neural network models.</description><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Construction planning</subject><subject>convolutional neural networks</subject><subject>Data mining</subject><subject>Embedding</subject><subject>Levels</subject><subject>multi‐representational architecture</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Semantics</subject><subject>Switching theory</subject><subject>Text categorization</subject><subject>text classification</subject><subject>Words (language)</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsisUNKGb_jJap4VCrtBtaWY2wpJcTFTijd8Ql8I19C2nTNbK5GOnc0OghdYpjgfm5sqJoJJoTwIzTCTMi8EAyO0QgKwnKpKD9FZymtAABTVozQ4qmr2-r3-ye6dXTJNa1pq9CYOrOh-Qx1d9ga18V9tJsQ31LmQ8xa99VmtjYpVb6y-945OvGmTu7ikGP0cn_3PH3M58uH2fR2nlsKmOfMWSkFU0oSJjz1HjxwLsEY6rkUhSq4KoURHCiwwilKS2-LVyilJT1r6BhdDXfXMXx0LrV6FbrYP5o0IZIIipWCnroeKBtDStF5vY7Vu4lbjUHvfOmdL7331cN4gDdV7bb_kHq6nC2Gzh_PyG81</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Jin, Rize</creator><creator>Lu, Liangfu</creator><creator>Lee, Joomin</creator><creator>Usman, Anwar</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5537-0744</orcidid><orcidid>https://orcid.org/0000-0001-8731-9775</orcidid></search><sort><creationdate>201908</creationdate><title>Multi‐representational convolutional neural networks for text classification</title><author>Jin, Rize ; Lu, Liangfu ; Lee, Joomin ; Usman, Anwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-4ec7764997246f3ff0f05570aa3f57689859b6a6503048e933bfc8d0b7c2f0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Construction planning</topic><topic>convolutional neural networks</topic><topic>Data mining</topic><topic>Embedding</topic><topic>Levels</topic><topic>multi‐representational architecture</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Semantics</topic><topic>Switching theory</topic><topic>Text categorization</topic><topic>text classification</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Rize</creatorcontrib><creatorcontrib>Lu, Liangfu</creatorcontrib><creatorcontrib>Lee, Joomin</creatorcontrib><creatorcontrib>Usman, Anwar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Rize</au><au>Lu, Liangfu</au><au>Lee, Joomin</au><au>Usman, Anwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐representational convolutional neural networks for text classification</atitle><jtitle>Computational intelligence</jtitle><date>2019-08</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>599</spage><epage>609</epage><pages>599-609</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear guidance on some aspects of their use, including choosing the proper level of embedding and switching word semantics from one domain to another when appropriate. In this paper, we propose a new architecture of CNN based on multiple representations for text classification, by constructing multiple planes so that more information can be dumped into the networks, such as different parts of text obtained through named entity recognizer or part‐of‐speech tagging tools, different levels of text embedding, or contextual sentences. Various large‐scale, domain‐specific datasets are used to validate the proposed architecture. Tasks analyzed include ontology document classification, biomedical event categorization, and sentiment analysis, showing that multi‐representational CNNs, which learns to focus attention to specific representations of text, can obtain further gains in performance over state‐of‐the‐art deep neural network models.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12225</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5537-0744</orcidid><orcidid>https://orcid.org/0000-0001-8731-9775</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2019-08, Vol.35 (3), p.599-609
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_journals_2272631990
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Architecture
Artificial neural networks
Classification
Construction planning
convolutional neural networks
Data mining
Embedding
Levels
multi‐representational architecture
Neural networks
Representations
Semantics
Switching theory
Text categorization
text classification
Words (language)
title Multi‐representational convolutional neural networks for text classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90representational%20convolutional%20neural%20networks%20for%20text%20classification&rft.jtitle=Computational%20intelligence&rft.au=Jin,%20Rize&rft.date=2019-08&rft.volume=35&rft.issue=3&rft.spage=599&rft.epage=609&rft.pages=599-609&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12225&rft_dat=%3Cproquest_cross%3E2272631990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272631990&rft_id=info:pmid/&rfr_iscdi=true