Multi‐representational convolutional neural networks for text classification
Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2019-08, Vol.35 (3), p.599-609 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 3 |
container_start_page | 599 |
container_title | Computational intelligence |
container_volume | 35 |
creator | Jin, Rize Lu, Liangfu Lee, Joomin Usman, Anwar |
description | Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear guidance on some aspects of their use, including choosing the proper level of embedding and switching word semantics from one domain to another when appropriate. In this paper, we propose a new architecture of CNN based on multiple representations for text classification, by constructing multiple planes so that more information can be dumped into the networks, such as different parts of text obtained through named entity recognizer or part‐of‐speech tagging tools, different levels of text embedding, or contextual sentences. Various large‐scale, domain‐specific datasets are used to validate the proposed architecture. Tasks analyzed include ontology document classification, biomedical event categorization, and sentiment analysis, showing that multi‐representational CNNs, which learns to focus attention to specific representations of text, can obtain further gains in performance over state‐of‐the‐art deep neural network models. |
doi_str_mv | 10.1111/coin.12225 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272631990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272631990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-4ec7764997246f3ff0f05570aa3f57689859b6a6503048e933bfc8d0b7c2f0fa3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsisUNKGb_jJap4VCrtBtaWY2wpJcTFTijd8Ql8I19C2nTNbK5GOnc0OghdYpjgfm5sqJoJJoTwIzTCTMi8EAyO0QgKwnKpKD9FZymtAABTVozQ4qmr2-r3-ye6dXTJNa1pq9CYOrOh-Qx1d9ga18V9tJsQ31LmQ8xa99VmtjYpVb6y-945OvGmTu7ikGP0cn_3PH3M58uH2fR2nlsKmOfMWSkFU0oSJjz1HjxwLsEY6rkUhSq4KoURHCiwwilKS2-LVyilJT1r6BhdDXfXMXx0LrV6FbrYP5o0IZIIipWCnroeKBtDStF5vY7Vu4lbjUHvfOmdL7331cN4gDdV7bb_kHq6nC2Gzh_PyG81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272631990</pqid></control><display><type>article</type><title>Multi‐representational convolutional neural networks for text classification</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Jin, Rize ; Lu, Liangfu ; Lee, Joomin ; Usman, Anwar</creator><creatorcontrib>Jin, Rize ; Lu, Liangfu ; Lee, Joomin ; Usman, Anwar</creatorcontrib><description>Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear guidance on some aspects of their use, including choosing the proper level of embedding and switching word semantics from one domain to another when appropriate. In this paper, we propose a new architecture of CNN based on multiple representations for text classification, by constructing multiple planes so that more information can be dumped into the networks, such as different parts of text obtained through named entity recognizer or part‐of‐speech tagging tools, different levels of text embedding, or contextual sentences. Various large‐scale, domain‐specific datasets are used to validate the proposed architecture. Tasks analyzed include ontology document classification, biomedical event categorization, and sentiment analysis, showing that multi‐representational CNNs, which learns to focus attention to specific representations of text, can obtain further gains in performance over state‐of‐the‐art deep neural network models.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12225</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Architecture ; Artificial neural networks ; Classification ; Construction planning ; convolutional neural networks ; Data mining ; Embedding ; Levels ; multi‐representational architecture ; Neural networks ; Representations ; Semantics ; Switching theory ; Text categorization ; text classification ; Words (language)</subject><ispartof>Computational intelligence, 2019-08, Vol.35 (3), p.599-609</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3015-4ec7764997246f3ff0f05570aa3f57689859b6a6503048e933bfc8d0b7c2f0fa3</citedby><cites>FETCH-LOGICAL-c3015-4ec7764997246f3ff0f05570aa3f57689859b6a6503048e933bfc8d0b7c2f0fa3</cites><orcidid>0000-0001-5537-0744 ; 0000-0001-8731-9775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12225$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12225$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jin, Rize</creatorcontrib><creatorcontrib>Lu, Liangfu</creatorcontrib><creatorcontrib>Lee, Joomin</creatorcontrib><creatorcontrib>Usman, Anwar</creatorcontrib><title>Multi‐representational convolutional neural networks for text classification</title><title>Computational intelligence</title><description>Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear guidance on some aspects of their use, including choosing the proper level of embedding and switching word semantics from one domain to another when appropriate. In this paper, we propose a new architecture of CNN based on multiple representations for text classification, by constructing multiple planes so that more information can be dumped into the networks, such as different parts of text obtained through named entity recognizer or part‐of‐speech tagging tools, different levels of text embedding, or contextual sentences. Various large‐scale, domain‐specific datasets are used to validate the proposed architecture. Tasks analyzed include ontology document classification, biomedical event categorization, and sentiment analysis, showing that multi‐representational CNNs, which learns to focus attention to specific representations of text, can obtain further gains in performance over state‐of‐the‐art deep neural network models.</description><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Construction planning</subject><subject>convolutional neural networks</subject><subject>Data mining</subject><subject>Embedding</subject><subject>Levels</subject><subject>multi‐representational architecture</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Semantics</subject><subject>Switching theory</subject><subject>Text categorization</subject><subject>text classification</subject><subject>Words (language)</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsisUNKGb_jJap4VCrtBtaWY2wpJcTFTijd8Ql8I19C2nTNbK5GOnc0OghdYpjgfm5sqJoJJoTwIzTCTMi8EAyO0QgKwnKpKD9FZymtAABTVozQ4qmr2-r3-ye6dXTJNa1pq9CYOrOh-Qx1d9ga18V9tJsQ31LmQ8xa99VmtjYpVb6y-945OvGmTu7ikGP0cn_3PH3M58uH2fR2nlsKmOfMWSkFU0oSJjz1HjxwLsEY6rkUhSq4KoURHCiwwilKS2-LVyilJT1r6BhdDXfXMXx0LrV6FbrYP5o0IZIIipWCnroeKBtDStF5vY7Vu4lbjUHvfOmdL7331cN4gDdV7bb_kHq6nC2Gzh_PyG81</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Jin, Rize</creator><creator>Lu, Liangfu</creator><creator>Lee, Joomin</creator><creator>Usman, Anwar</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5537-0744</orcidid><orcidid>https://orcid.org/0000-0001-8731-9775</orcidid></search><sort><creationdate>201908</creationdate><title>Multi‐representational convolutional neural networks for text classification</title><author>Jin, Rize ; Lu, Liangfu ; Lee, Joomin ; Usman, Anwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-4ec7764997246f3ff0f05570aa3f57689859b6a6503048e933bfc8d0b7c2f0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Construction planning</topic><topic>convolutional neural networks</topic><topic>Data mining</topic><topic>Embedding</topic><topic>Levels</topic><topic>multi‐representational architecture</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Semantics</topic><topic>Switching theory</topic><topic>Text categorization</topic><topic>text classification</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Rize</creatorcontrib><creatorcontrib>Lu, Liangfu</creatorcontrib><creatorcontrib>Lee, Joomin</creatorcontrib><creatorcontrib>Usman, Anwar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Rize</au><au>Lu, Liangfu</au><au>Lee, Joomin</au><au>Usman, Anwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐representational convolutional neural networks for text classification</atitle><jtitle>Computational intelligence</jtitle><date>2019-08</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>599</spage><epage>609</epage><pages>599-609</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Various studies have demonstrated that convolutional neural networks (CNNs) can be directly applied to different levels of text embedding, such as character‐, word‐, or document‐levels. However, the effectiveness of different embeddings is limited in the reported result and there is a lack of clear guidance on some aspects of their use, including choosing the proper level of embedding and switching word semantics from one domain to another when appropriate. In this paper, we propose a new architecture of CNN based on multiple representations for text classification, by constructing multiple planes so that more information can be dumped into the networks, such as different parts of text obtained through named entity recognizer or part‐of‐speech tagging tools, different levels of text embedding, or contextual sentences. Various large‐scale, domain‐specific datasets are used to validate the proposed architecture. Tasks analyzed include ontology document classification, biomedical event categorization, and sentiment analysis, showing that multi‐representational CNNs, which learns to focus attention to specific representations of text, can obtain further gains in performance over state‐of‐the‐art deep neural network models.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12225</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5537-0744</orcidid><orcidid>https://orcid.org/0000-0001-8731-9775</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2019-08, Vol.35 (3), p.599-609 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_2272631990 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Architecture Artificial neural networks Classification Construction planning convolutional neural networks Data mining Embedding Levels multi‐representational architecture Neural networks Representations Semantics Switching theory Text categorization text classification Words (language) |
title | Multi‐representational convolutional neural networks for text classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90representational%20convolutional%20neural%20networks%20for%20text%20classification&rft.jtitle=Computational%20intelligence&rft.au=Jin,%20Rize&rft.date=2019-08&rft.volume=35&rft.issue=3&rft.spage=599&rft.epage=609&rft.pages=599-609&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12225&rft_dat=%3Cproquest_cross%3E2272631990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272631990&rft_id=info:pmid/&rfr_iscdi=true |