Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites

This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, eliminati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-07, Vol.731, p.446-453
Hauptverfasser: Yaghobizadeh, Omid, Sedghi, Arman, Baharvandi, Hamid Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue
container_start_page 446
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 731
creator Yaghobizadeh, Omid
Sedghi, Arman
Baharvandi, Hamid Reza
description This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, elimination of residual silicon and addition of Al have positive impacts not only on the MAX phase content but also on the mechanical properties of the samples. The bending strength of C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 compared to C-C-SiC composites improved by 59.67% and 103.6%, respectively. Moreover, their interlaminar shear strength enhanced by 30.4% and 41.6% and their fracture toughness increased by 72.27% and 89.1%, respectively. Investigations have clarified that inter-bundle matrix of these composites has more MAX phase proving that it can tolerate various micro-transformation mechanisms such as crack deflection, bending and delamination of lamellae, kink boundary and laminate fracture. These phenomena lead to the toughening of such composites and prohibition of crack propagation. Improved properties of the MAX phase-containing samples reveal the potential of such composites as functional and structural materials.
doi_str_mv 10.1016/j.msea.2018.06.069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272210029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318308657</els_id><sourcerecordid>2272210029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-aceda2a8518e1a98a6d5780ac87a34bd817bb614c0d57cac147d6f5f2e85d5723</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoDnga8KJi1k3llwIsMvmDFg-s5ZDM9bMadh0lG8O_NuHrwIjR0U1R1VxchpwwWDFh21Sxah2rBgYkFZKGKPTJjIo9pUsTZPplBwRlNoYgPyZFzDQCwBNIZeXtCvVGd0WobDbYf0HqDLlJdFbVG2955O2o_Woz6OvIbjEpa0hdTXv4OdGXi0Pi35A92frO9CLju26F3xqM7Jge12jo8-elz8np3uyof6PL5_rG8WVLNk9hTpbFSXImUCWSqECqr0lyA0iJXcbKuBMvX64wlGgKulWZJXmV1WnMUaUB4PCdnu73hofcRnZdNP9ounJSc55wzAF4EFt-xpi-dxVoO1rTKfkoGcgpVNnIKVU6hSshCTaLrnQiD_w-DVjptsAuOjUXtZdWb_-Rfm1l9dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272210029</pqid></control><display><type>article</type><title>Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites</title><source>Elsevier ScienceDirect Journals</source><creator>Yaghobizadeh, Omid ; Sedghi, Arman ; Baharvandi, Hamid Reza</creator><creatorcontrib>Yaghobizadeh, Omid ; Sedghi, Arman ; Baharvandi, Hamid Reza</creatorcontrib><description>This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, elimination of residual silicon and addition of Al have positive impacts not only on the MAX phase content but also on the mechanical properties of the samples. The bending strength of C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 compared to C-C-SiC composites improved by 59.67% and 103.6%, respectively. Moreover, their interlaminar shear strength enhanced by 30.4% and 41.6% and their fracture toughness increased by 72.27% and 89.1%, respectively. Investigations have clarified that inter-bundle matrix of these composites has more MAX phase proving that it can tolerate various micro-transformation mechanisms such as crack deflection, bending and delamination of lamellae, kink boundary and laminate fracture. These phenomena lead to the toughening of such composites and prohibition of crack propagation. Improved properties of the MAX phase-containing samples reveal the potential of such composites as functional and structural materials.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.06.069</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Additives ; Aluminum ; Bend strength ; Carbon fibers ; Carbon-carbon composites ; Crack propagation ; Fracture toughness ; Interfacial shear strength ; Mechanical properties ; Phase composition ; Prohibition ; Shear strength ; Silicon carbide ; Ti3SiC2 ; Titanium carbide ; Titanium silicon carbide</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2018-07, Vol.731, p.446-453</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-aceda2a8518e1a98a6d5780ac87a34bd817bb614c0d57cac147d6f5f2e85d5723</citedby><cites>FETCH-LOGICAL-c243t-aceda2a8518e1a98a6d5780ac87a34bd817bb614c0d57cac147d6f5f2e85d5723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2018.06.069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Yaghobizadeh, Omid</creatorcontrib><creatorcontrib>Sedghi, Arman</creatorcontrib><creatorcontrib>Baharvandi, Hamid Reza</creatorcontrib><title>Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, elimination of residual silicon and addition of Al have positive impacts not only on the MAX phase content but also on the mechanical properties of the samples. The bending strength of C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 compared to C-C-SiC composites improved by 59.67% and 103.6%, respectively. Moreover, their interlaminar shear strength enhanced by 30.4% and 41.6% and their fracture toughness increased by 72.27% and 89.1%, respectively. Investigations have clarified that inter-bundle matrix of these composites has more MAX phase proving that it can tolerate various micro-transformation mechanisms such as crack deflection, bending and delamination of lamellae, kink boundary and laminate fracture. These phenomena lead to the toughening of such composites and prohibition of crack propagation. Improved properties of the MAX phase-containing samples reveal the potential of such composites as functional and structural materials.</description><subject>Additives</subject><subject>Aluminum</subject><subject>Bend strength</subject><subject>Carbon fibers</subject><subject>Carbon-carbon composites</subject><subject>Crack propagation</subject><subject>Fracture toughness</subject><subject>Interfacial shear strength</subject><subject>Mechanical properties</subject><subject>Phase composition</subject><subject>Prohibition</subject><subject>Shear strength</subject><subject>Silicon carbide</subject><subject>Ti3SiC2</subject><subject>Titanium carbide</subject><subject>Titanium silicon carbide</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoDnga8KJi1k3llwIsMvmDFg-s5ZDM9bMadh0lG8O_NuHrwIjR0U1R1VxchpwwWDFh21Sxah2rBgYkFZKGKPTJjIo9pUsTZPplBwRlNoYgPyZFzDQCwBNIZeXtCvVGd0WobDbYf0HqDLlJdFbVG2955O2o_Woz6OvIbjEpa0hdTXv4OdGXi0Pi35A92frO9CLju26F3xqM7Jge12jo8-elz8np3uyof6PL5_rG8WVLNk9hTpbFSXImUCWSqECqr0lyA0iJXcbKuBMvX64wlGgKulWZJXmV1WnMUaUB4PCdnu73hofcRnZdNP9ounJSc55wzAF4EFt-xpi-dxVoO1rTKfkoGcgpVNnIKVU6hSshCTaLrnQiD_w-DVjptsAuOjUXtZdWb_-Rfm1l9dg</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Yaghobizadeh, Omid</creator><creator>Sedghi, Arman</creator><creator>Baharvandi, Hamid Reza</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180725</creationdate><title>Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites</title><author>Yaghobizadeh, Omid ; Sedghi, Arman ; Baharvandi, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-aceda2a8518e1a98a6d5780ac87a34bd817bb614c0d57cac147d6f5f2e85d5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Aluminum</topic><topic>Bend strength</topic><topic>Carbon fibers</topic><topic>Carbon-carbon composites</topic><topic>Crack propagation</topic><topic>Fracture toughness</topic><topic>Interfacial shear strength</topic><topic>Mechanical properties</topic><topic>Phase composition</topic><topic>Prohibition</topic><topic>Shear strength</topic><topic>Silicon carbide</topic><topic>Ti3SiC2</topic><topic>Titanium carbide</topic><topic>Titanium silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghobizadeh, Omid</creatorcontrib><creatorcontrib>Sedghi, Arman</creatorcontrib><creatorcontrib>Baharvandi, Hamid Reza</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghobizadeh, Omid</au><au>Sedghi, Arman</au><au>Baharvandi, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-07-25</date><risdate>2018</risdate><volume>731</volume><spage>446</spage><epage>453</epage><pages>446-453</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, elimination of residual silicon and addition of Al have positive impacts not only on the MAX phase content but also on the mechanical properties of the samples. The bending strength of C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 compared to C-C-SiC composites improved by 59.67% and 103.6%, respectively. Moreover, their interlaminar shear strength enhanced by 30.4% and 41.6% and their fracture toughness increased by 72.27% and 89.1%, respectively. Investigations have clarified that inter-bundle matrix of these composites has more MAX phase proving that it can tolerate various micro-transformation mechanisms such as crack deflection, bending and delamination of lamellae, kink boundary and laminate fracture. These phenomena lead to the toughening of such composites and prohibition of crack propagation. Improved properties of the MAX phase-containing samples reveal the potential of such composites as functional and structural materials.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.06.069</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-07, Vol.731, p.446-453
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2272210029
source Elsevier ScienceDirect Journals
subjects Additives
Aluminum
Bend strength
Carbon fibers
Carbon-carbon composites
Crack propagation
Fracture toughness
Interfacial shear strength
Mechanical properties
Phase composition
Prohibition
Shear strength
Silicon carbide
Ti3SiC2
Titanium carbide
Titanium silicon carbide
title Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20microstructure%20of%20the%20C-C-SiC,%20C-C-SiC-Ti3SiC2%20and%20C-C-SiC-Ti3Si(Al)C2%20composites&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yaghobizadeh,%20Omid&rft.date=2018-07-25&rft.volume=731&rft.spage=446&rft.epage=453&rft.pages=446-453&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.06.069&rft_dat=%3Cproquest_cross%3E2272210029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272210029&rft_id=info:pmid/&rft_els_id=S0921509318308657&rfr_iscdi=true