Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites
This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, eliminati...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-07, Vol.731, p.446-453 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 453 |
---|---|
container_issue | |
container_start_page | 446 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 731 |
creator | Yaghobizadeh, Omid Sedghi, Arman Baharvandi, Hamid Reza |
description | This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, elimination of residual silicon and addition of Al have positive impacts not only on the MAX phase content but also on the mechanical properties of the samples. The bending strength of C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 compared to C-C-SiC composites improved by 59.67% and 103.6%, respectively. Moreover, their interlaminar shear strength enhanced by 30.4% and 41.6% and their fracture toughness increased by 72.27% and 89.1%, respectively. Investigations have clarified that inter-bundle matrix of these composites has more MAX phase proving that it can tolerate various micro-transformation mechanisms such as crack deflection, bending and delamination of lamellae, kink boundary and laminate fracture. These phenomena lead to the toughening of such composites and prohibition of crack propagation. Improved properties of the MAX phase-containing samples reveal the potential of such composites as functional and structural materials. |
doi_str_mv | 10.1016/j.msea.2018.06.069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272210029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318308657</els_id><sourcerecordid>2272210029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-aceda2a8518e1a98a6d5780ac87a34bd817bb614c0d57cac147d6f5f2e85d5723</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoDnga8KJi1k3llwIsMvmDFg-s5ZDM9bMadh0lG8O_NuHrwIjR0U1R1VxchpwwWDFh21Sxah2rBgYkFZKGKPTJjIo9pUsTZPplBwRlNoYgPyZFzDQCwBNIZeXtCvVGd0WobDbYf0HqDLlJdFbVG2955O2o_Woz6OvIbjEpa0hdTXv4OdGXi0Pi35A92frO9CLju26F3xqM7Jge12jo8-elz8np3uyof6PL5_rG8WVLNk9hTpbFSXImUCWSqECqr0lyA0iJXcbKuBMvX64wlGgKulWZJXmV1WnMUaUB4PCdnu73hofcRnZdNP9ounJSc55wzAF4EFt-xpi-dxVoO1rTKfkoGcgpVNnIKVU6hSshCTaLrnQiD_w-DVjptsAuOjUXtZdWb_-Rfm1l9dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272210029</pqid></control><display><type>article</type><title>Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites</title><source>Elsevier ScienceDirect Journals</source><creator>Yaghobizadeh, Omid ; Sedghi, Arman ; Baharvandi, Hamid Reza</creator><creatorcontrib>Yaghobizadeh, Omid ; Sedghi, Arman ; Baharvandi, Hamid Reza</creatorcontrib><description>This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, elimination of residual silicon and addition of Al have positive impacts not only on the MAX phase content but also on the mechanical properties of the samples. The bending strength of C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 compared to C-C-SiC composites improved by 59.67% and 103.6%, respectively. Moreover, their interlaminar shear strength enhanced by 30.4% and 41.6% and their fracture toughness increased by 72.27% and 89.1%, respectively. Investigations have clarified that inter-bundle matrix of these composites has more MAX phase proving that it can tolerate various micro-transformation mechanisms such as crack deflection, bending and delamination of lamellae, kink boundary and laminate fracture. These phenomena lead to the toughening of such composites and prohibition of crack propagation. Improved properties of the MAX phase-containing samples reveal the potential of such composites as functional and structural materials.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.06.069</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Additives ; Aluminum ; Bend strength ; Carbon fibers ; Carbon-carbon composites ; Crack propagation ; Fracture toughness ; Interfacial shear strength ; Mechanical properties ; Phase composition ; Prohibition ; Shear strength ; Silicon carbide ; Ti3SiC2 ; Titanium carbide ; Titanium silicon carbide</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-07, Vol.731, p.446-453</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-aceda2a8518e1a98a6d5780ac87a34bd817bb614c0d57cac147d6f5f2e85d5723</citedby><cites>FETCH-LOGICAL-c243t-aceda2a8518e1a98a6d5780ac87a34bd817bb614c0d57cac147d6f5f2e85d5723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2018.06.069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Yaghobizadeh, Omid</creatorcontrib><creatorcontrib>Sedghi, Arman</creatorcontrib><creatorcontrib>Baharvandi, Hamid Reza</creatorcontrib><title>Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, elimination of residual silicon and addition of Al have positive impacts not only on the MAX phase content but also on the mechanical properties of the samples. The bending strength of C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 compared to C-C-SiC composites improved by 59.67% and 103.6%, respectively. Moreover, their interlaminar shear strength enhanced by 30.4% and 41.6% and their fracture toughness increased by 72.27% and 89.1%, respectively. Investigations have clarified that inter-bundle matrix of these composites has more MAX phase proving that it can tolerate various micro-transformation mechanisms such as crack deflection, bending and delamination of lamellae, kink boundary and laminate fracture. These phenomena lead to the toughening of such composites and prohibition of crack propagation. Improved properties of the MAX phase-containing samples reveal the potential of such composites as functional and structural materials.</description><subject>Additives</subject><subject>Aluminum</subject><subject>Bend strength</subject><subject>Carbon fibers</subject><subject>Carbon-carbon composites</subject><subject>Crack propagation</subject><subject>Fracture toughness</subject><subject>Interfacial shear strength</subject><subject>Mechanical properties</subject><subject>Phase composition</subject><subject>Prohibition</subject><subject>Shear strength</subject><subject>Silicon carbide</subject><subject>Ti3SiC2</subject><subject>Titanium carbide</subject><subject>Titanium silicon carbide</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoDnga8KJi1k3llwIsMvmDFg-s5ZDM9bMadh0lG8O_NuHrwIjR0U1R1VxchpwwWDFh21Sxah2rBgYkFZKGKPTJjIo9pUsTZPplBwRlNoYgPyZFzDQCwBNIZeXtCvVGd0WobDbYf0HqDLlJdFbVG2955O2o_Woz6OvIbjEpa0hdTXv4OdGXi0Pi35A92frO9CLju26F3xqM7Jge12jo8-elz8np3uyof6PL5_rG8WVLNk9hTpbFSXImUCWSqECqr0lyA0iJXcbKuBMvX64wlGgKulWZJXmV1WnMUaUB4PCdnu73hofcRnZdNP9ounJSc55wzAF4EFt-xpi-dxVoO1rTKfkoGcgpVNnIKVU6hSshCTaLrnQiD_w-DVjptsAuOjUXtZdWb_-Rfm1l9dg</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Yaghobizadeh, Omid</creator><creator>Sedghi, Arman</creator><creator>Baharvandi, Hamid Reza</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180725</creationdate><title>Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites</title><author>Yaghobizadeh, Omid ; Sedghi, Arman ; Baharvandi, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-aceda2a8518e1a98a6d5780ac87a34bd817bb614c0d57cac147d6f5f2e85d5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Aluminum</topic><topic>Bend strength</topic><topic>Carbon fibers</topic><topic>Carbon-carbon composites</topic><topic>Crack propagation</topic><topic>Fracture toughness</topic><topic>Interfacial shear strength</topic><topic>Mechanical properties</topic><topic>Phase composition</topic><topic>Prohibition</topic><topic>Shear strength</topic><topic>Silicon carbide</topic><topic>Ti3SiC2</topic><topic>Titanium carbide</topic><topic>Titanium silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghobizadeh, Omid</creatorcontrib><creatorcontrib>Sedghi, Arman</creatorcontrib><creatorcontrib>Baharvandi, Hamid Reza</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghobizadeh, Omid</au><au>Sedghi, Arman</au><au>Baharvandi, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-07-25</date><risdate>2018</risdate><volume>731</volume><spage>446</spage><epage>453</epage><pages>446-453</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This study is focused on the evaluation of various parameters and their effects on the phase composition and mechanical properties of MAX phase-reinforced C-C-SiC composite, fabricated by liquid silicon infiltration (LSI) method. The results have shown that reduction of TiC particles size, elimination of residual silicon and addition of Al have positive impacts not only on the MAX phase content but also on the mechanical properties of the samples. The bending strength of C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 compared to C-C-SiC composites improved by 59.67% and 103.6%, respectively. Moreover, their interlaminar shear strength enhanced by 30.4% and 41.6% and their fracture toughness increased by 72.27% and 89.1%, respectively. Investigations have clarified that inter-bundle matrix of these composites has more MAX phase proving that it can tolerate various micro-transformation mechanisms such as crack deflection, bending and delamination of lamellae, kink boundary and laminate fracture. These phenomena lead to the toughening of such composites and prohibition of crack propagation. Improved properties of the MAX phase-containing samples reveal the potential of such composites as functional and structural materials.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.06.069</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-07, Vol.731, p.446-453 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2272210029 |
source | Elsevier ScienceDirect Journals |
subjects | Additives Aluminum Bend strength Carbon fibers Carbon-carbon composites Crack propagation Fracture toughness Interfacial shear strength Mechanical properties Phase composition Prohibition Shear strength Silicon carbide Ti3SiC2 Titanium carbide Titanium silicon carbide |
title | Mechanical properties and microstructure of the C-C-SiC, C-C-SiC-Ti3SiC2 and C-C-SiC-Ti3Si(Al)C2 composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20microstructure%20of%20the%20C-C-SiC,%20C-C-SiC-Ti3SiC2%20and%20C-C-SiC-Ti3Si(Al)C2%20composites&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yaghobizadeh,%20Omid&rft.date=2018-07-25&rft.volume=731&rft.spage=446&rft.epage=453&rft.pages=446-453&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.06.069&rft_dat=%3Cproquest_cross%3E2272210029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272210029&rft_id=info:pmid/&rft_els_id=S0921509318308657&rfr_iscdi=true |