Modelling the cyclic ratcheting of sands through memory-enhanced bounding surface plasticity
The modelling and simulation of cyclic sand ratcheting is tackled by means of a plasticity model formulated within the well-known critical state, bounding surface SANISAND framework. For this purpose, a third locus – termed the ‘memory surface’ – is cast into the constitutive formulation, so as to p...
Gespeichert in:
Veröffentlicht in: | Géotechnique 2019-09, Vol.69 (9), p.783-800 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The modelling and simulation of cyclic sand ratcheting is tackled by means of a plasticity model formulated within the well-known critical state, bounding surface SANISAND framework. For this purpose, a third locus – termed the ‘memory surface’ – is cast into the constitutive formulation, so as to phenomenologically capture micro-mechanical, fabric-related processes directly relevant to the cyclic response. The predictive capability of the model under numerous loading cycles (‘high-cyclic’ loading) is explored with focus on drained loading conditions, and validated against experimental test results from the literature – including triaxial, simple shear and cyclic loading by oedometer test. The model proves capable of reproducing the transition from ratcheting to shakedown response, in combination with a single set of soil parameters for different initial, boundary and loading conditions. This work contributes to the analysis of soil–structure interaction under high-cyclic loading events, such as those induced by environmental and/or traffic loads. |
---|---|
ISSN: | 0016-8505 1751-7656 |
DOI: | 10.1680/jgeot.17.P.307 |