Using Satellite‐Based Vegetation Cover as Indicator of Groundwater Storage in Natural Vegetation Areas

Normalized Difference Vegetation Index (NDVI) is widely used as an efficient indicator of vegetation cover. Here we assess the possibility of using NDVI as an indicator of groundwater storage. We used groundwater level (GWL) obtained from in situ groundwater observation wells (n > 15,000) in Indi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2019-07, Vol.46 (14), p.8082-8092
Hauptverfasser: Bhanja, Soumendra N., Malakar, Pragnaditya, Mukherjee, Abhijit, Rodell, Matthew, Mitra, Pabitra, Sarkar, Sudeshna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8092
container_issue 14
container_start_page 8082
container_title Geophysical research letters
container_volume 46
creator Bhanja, Soumendra N.
Malakar, Pragnaditya
Mukherjee, Abhijit
Rodell, Matthew
Mitra, Pabitra
Sarkar, Sudeshna
description Normalized Difference Vegetation Index (NDVI) is widely used as an efficient indicator of vegetation cover. Here we assess the possibility of using NDVI as an indicator of groundwater storage. We used groundwater level (GWL) obtained from in situ groundwater observation wells (n > 15,000) in India in 2005–2013. Good correlation (r > 0.6) is observed between NDVI and GWL in natural vegetation‐covered areas, that is, forest lands, shrubs, and grasslands. We apply artificial neural network and support vector machine approaches to investigate the relationship between GWL and NDVI using both of the parameters as input. Artificial neural network‐ and support vector machine‐simulated GWL matches very well with observed GWL, particularly in naturally vegetated areas. Thus, we interpret that NDVI may be used as a suitable indicator of groundwater storage conditions in certain areas where the water table is shallow and the vegetation is natural and where in situ groundwater observations are not available. Plain Language Summary Long‐term groundwater resources monitoring is costly at large scales. Satellite‐based estimations based on Gravity Recovery and Climate Experiment satellite observations can provide groundwater resource information at coarse spatial and temporal resolution. In this study, we used widely available, high‐resolution vegetation index data and investigated the possibility of using it as a proxy of groundwater storage. Artificial intelligence‐based approaches that incorporates vegetation index data show good performance in estimating groundwater levels. The results are particularly encouraging in natural vegetation covered areas. Key Points Widely available, satellite‐based vegetation index may be used as a suitable indicator of groundwater storage Artificial intelligence estimates show good performance of vegetation index on predicting future groundwater levels Vegetation index can be used as an indicator of groundwater storage particularly at natural vegetation‐covered areas
doi_str_mv 10.1029/2019GL083015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272119310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272119310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3295-1001456f82dbb1ea8efb53977026721e2115fb271631d2fc39fbd6fbf65b78f93</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqVw4wMscSWwa9dJfCwVhEoRSJRyjZzGLqlCXGyHqjc-gW_kSwgqh544zWr0ZlYaQs4RrhCYvGaAMssh5YDigAxQjkZRCpAckgGA7G-WxMfkxPsVAHDgOCCvc1-3SzpTQTdNHfT359eN8rqiL3qpgwq1benEfmhHlafTtqoXKlhHraGZs11bbfqgo7PeU0tN65Y-qNA51eznx04rf0qOjGq8PvvTIZnf3T5P7qP8MZtOxnmkOJMiQgAcidikrCpL1CrVphRcJgmwOGGoGaIwJUsw5lgxs-DSlFVsShOLMkmN5ENysetdO_veaR-Kle1c278sGOsbUHKEnrrcUQtnvXfaFGtXvym3LRCK3y2L_S17nO3wTd3o7b9skT3lQrJY8B8kjHXH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272119310</pqid></control><display><type>article</type><title>Using Satellite‐Based Vegetation Cover as Indicator of Groundwater Storage in Natural Vegetation Areas</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Bhanja, Soumendra N. ; Malakar, Pragnaditya ; Mukherjee, Abhijit ; Rodell, Matthew ; Mitra, Pabitra ; Sarkar, Sudeshna</creator><creatorcontrib>Bhanja, Soumendra N. ; Malakar, Pragnaditya ; Mukherjee, Abhijit ; Rodell, Matthew ; Mitra, Pabitra ; Sarkar, Sudeshna</creatorcontrib><description>Normalized Difference Vegetation Index (NDVI) is widely used as an efficient indicator of vegetation cover. Here we assess the possibility of using NDVI as an indicator of groundwater storage. We used groundwater level (GWL) obtained from in situ groundwater observation wells (n &gt; 15,000) in India in 2005–2013. Good correlation (r &gt; 0.6) is observed between NDVI and GWL in natural vegetation‐covered areas, that is, forest lands, shrubs, and grasslands. We apply artificial neural network and support vector machine approaches to investigate the relationship between GWL and NDVI using both of the parameters as input. Artificial neural network‐ and support vector machine‐simulated GWL matches very well with observed GWL, particularly in naturally vegetated areas. Thus, we interpret that NDVI may be used as a suitable indicator of groundwater storage conditions in certain areas where the water table is shallow and the vegetation is natural and where in situ groundwater observations are not available. Plain Language Summary Long‐term groundwater resources monitoring is costly at large scales. Satellite‐based estimations based on Gravity Recovery and Climate Experiment satellite observations can provide groundwater resource information at coarse spatial and temporal resolution. In this study, we used widely available, high‐resolution vegetation index data and investigated the possibility of using it as a proxy of groundwater storage. Artificial intelligence‐based approaches that incorporates vegetation index data show good performance in estimating groundwater levels. The results are particularly encouraging in natural vegetation covered areas. Key Points Widely available, satellite‐based vegetation index may be used as a suitable indicator of groundwater storage Artificial intelligence estimates show good performance of vegetation index on predicting future groundwater levels Vegetation index can be used as an indicator of groundwater storage particularly at natural vegetation‐covered areas</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL083015</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>ANN ; Artificial intelligence ; Artificial neural networks ; Computer simulation ; GRACE (experiment) ; Grasslands ; Gravity ; Groundwater ; Groundwater availability ; Groundwater level prediction ; Groundwater levels ; Groundwater resources ; Groundwater storage ; Groundwater table ; India ; Natural vegetation ; NDVI ; Neural networks ; Normalized difference vegetative index ; Observation wells ; Plant cover ; Resolution ; Satellite observation ; Satellites ; Shrubs ; Storage conditions ; Support vector machines ; SVM ; Temporal resolution ; Vegetation ; Vegetation cover ; Vegetation index ; Water resources ; Water table</subject><ispartof>Geophysical research letters, 2019-07, Vol.46 (14), p.8082-8092</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3295-1001456f82dbb1ea8efb53977026721e2115fb271631d2fc39fbd6fbf65b78f93</citedby><cites>FETCH-LOGICAL-a3295-1001456f82dbb1ea8efb53977026721e2115fb271631d2fc39fbd6fbf65b78f93</cites><orcidid>0000-0003-0106-7437 ; 0000-0002-0555-0875 ; 0000-0002-9434-8483 ; 0000-0003-3439-4282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL083015$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL083015$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11512,27922,27923,45572,45573,46407,46466,46831,46890</link.rule.ids></links><search><creatorcontrib>Bhanja, Soumendra N.</creatorcontrib><creatorcontrib>Malakar, Pragnaditya</creatorcontrib><creatorcontrib>Mukherjee, Abhijit</creatorcontrib><creatorcontrib>Rodell, Matthew</creatorcontrib><creatorcontrib>Mitra, Pabitra</creatorcontrib><creatorcontrib>Sarkar, Sudeshna</creatorcontrib><title>Using Satellite‐Based Vegetation Cover as Indicator of Groundwater Storage in Natural Vegetation Areas</title><title>Geophysical research letters</title><description>Normalized Difference Vegetation Index (NDVI) is widely used as an efficient indicator of vegetation cover. Here we assess the possibility of using NDVI as an indicator of groundwater storage. We used groundwater level (GWL) obtained from in situ groundwater observation wells (n &gt; 15,000) in India in 2005–2013. Good correlation (r &gt; 0.6) is observed between NDVI and GWL in natural vegetation‐covered areas, that is, forest lands, shrubs, and grasslands. We apply artificial neural network and support vector machine approaches to investigate the relationship between GWL and NDVI using both of the parameters as input. Artificial neural network‐ and support vector machine‐simulated GWL matches very well with observed GWL, particularly in naturally vegetated areas. Thus, we interpret that NDVI may be used as a suitable indicator of groundwater storage conditions in certain areas where the water table is shallow and the vegetation is natural and where in situ groundwater observations are not available. Plain Language Summary Long‐term groundwater resources monitoring is costly at large scales. Satellite‐based estimations based on Gravity Recovery and Climate Experiment satellite observations can provide groundwater resource information at coarse spatial and temporal resolution. In this study, we used widely available, high‐resolution vegetation index data and investigated the possibility of using it as a proxy of groundwater storage. Artificial intelligence‐based approaches that incorporates vegetation index data show good performance in estimating groundwater levels. The results are particularly encouraging in natural vegetation covered areas. Key Points Widely available, satellite‐based vegetation index may be used as a suitable indicator of groundwater storage Artificial intelligence estimates show good performance of vegetation index on predicting future groundwater levels Vegetation index can be used as an indicator of groundwater storage particularly at natural vegetation‐covered areas</description><subject>ANN</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>GRACE (experiment)</subject><subject>Grasslands</subject><subject>Gravity</subject><subject>Groundwater</subject><subject>Groundwater availability</subject><subject>Groundwater level prediction</subject><subject>Groundwater levels</subject><subject>Groundwater resources</subject><subject>Groundwater storage</subject><subject>Groundwater table</subject><subject>India</subject><subject>Natural vegetation</subject><subject>NDVI</subject><subject>Neural networks</subject><subject>Normalized difference vegetative index</subject><subject>Observation wells</subject><subject>Plant cover</subject><subject>Resolution</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Shrubs</subject><subject>Storage conditions</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Temporal resolution</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><subject>Vegetation index</subject><subject>Water resources</subject><subject>Water table</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqVw4wMscSWwa9dJfCwVhEoRSJRyjZzGLqlCXGyHqjc-gW_kSwgqh544zWr0ZlYaQs4RrhCYvGaAMssh5YDigAxQjkZRCpAckgGA7G-WxMfkxPsVAHDgOCCvc1-3SzpTQTdNHfT359eN8rqiL3qpgwq1benEfmhHlafTtqoXKlhHraGZs11bbfqgo7PeU0tN65Y-qNA51eznx04rf0qOjGq8PvvTIZnf3T5P7qP8MZtOxnmkOJMiQgAcidikrCpL1CrVphRcJgmwOGGoGaIwJUsw5lgxs-DSlFVsShOLMkmN5ENysetdO_veaR-Kle1c278sGOsbUHKEnrrcUQtnvXfaFGtXvym3LRCK3y2L_S17nO3wTd3o7b9skT3lQrJY8B8kjHXH</recordid><startdate>20190728</startdate><enddate>20190728</enddate><creator>Bhanja, Soumendra N.</creator><creator>Malakar, Pragnaditya</creator><creator>Mukherjee, Abhijit</creator><creator>Rodell, Matthew</creator><creator>Mitra, Pabitra</creator><creator>Sarkar, Sudeshna</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0106-7437</orcidid><orcidid>https://orcid.org/0000-0002-0555-0875</orcidid><orcidid>https://orcid.org/0000-0002-9434-8483</orcidid><orcidid>https://orcid.org/0000-0003-3439-4282</orcidid></search><sort><creationdate>20190728</creationdate><title>Using Satellite‐Based Vegetation Cover as Indicator of Groundwater Storage in Natural Vegetation Areas</title><author>Bhanja, Soumendra N. ; Malakar, Pragnaditya ; Mukherjee, Abhijit ; Rodell, Matthew ; Mitra, Pabitra ; Sarkar, Sudeshna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3295-1001456f82dbb1ea8efb53977026721e2115fb271631d2fc39fbd6fbf65b78f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ANN</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>GRACE (experiment)</topic><topic>Grasslands</topic><topic>Gravity</topic><topic>Groundwater</topic><topic>Groundwater availability</topic><topic>Groundwater level prediction</topic><topic>Groundwater levels</topic><topic>Groundwater resources</topic><topic>Groundwater storage</topic><topic>Groundwater table</topic><topic>India</topic><topic>Natural vegetation</topic><topic>NDVI</topic><topic>Neural networks</topic><topic>Normalized difference vegetative index</topic><topic>Observation wells</topic><topic>Plant cover</topic><topic>Resolution</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Shrubs</topic><topic>Storage conditions</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Temporal resolution</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><topic>Vegetation index</topic><topic>Water resources</topic><topic>Water table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhanja, Soumendra N.</creatorcontrib><creatorcontrib>Malakar, Pragnaditya</creatorcontrib><creatorcontrib>Mukherjee, Abhijit</creatorcontrib><creatorcontrib>Rodell, Matthew</creatorcontrib><creatorcontrib>Mitra, Pabitra</creatorcontrib><creatorcontrib>Sarkar, Sudeshna</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhanja, Soumendra N.</au><au>Malakar, Pragnaditya</au><au>Mukherjee, Abhijit</au><au>Rodell, Matthew</au><au>Mitra, Pabitra</au><au>Sarkar, Sudeshna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Satellite‐Based Vegetation Cover as Indicator of Groundwater Storage in Natural Vegetation Areas</atitle><jtitle>Geophysical research letters</jtitle><date>2019-07-28</date><risdate>2019</risdate><volume>46</volume><issue>14</issue><spage>8082</spage><epage>8092</epage><pages>8082-8092</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Normalized Difference Vegetation Index (NDVI) is widely used as an efficient indicator of vegetation cover. Here we assess the possibility of using NDVI as an indicator of groundwater storage. We used groundwater level (GWL) obtained from in situ groundwater observation wells (n &gt; 15,000) in India in 2005–2013. Good correlation (r &gt; 0.6) is observed between NDVI and GWL in natural vegetation‐covered areas, that is, forest lands, shrubs, and grasslands. We apply artificial neural network and support vector machine approaches to investigate the relationship between GWL and NDVI using both of the parameters as input. Artificial neural network‐ and support vector machine‐simulated GWL matches very well with observed GWL, particularly in naturally vegetated areas. Thus, we interpret that NDVI may be used as a suitable indicator of groundwater storage conditions in certain areas where the water table is shallow and the vegetation is natural and where in situ groundwater observations are not available. Plain Language Summary Long‐term groundwater resources monitoring is costly at large scales. Satellite‐based estimations based on Gravity Recovery and Climate Experiment satellite observations can provide groundwater resource information at coarse spatial and temporal resolution. In this study, we used widely available, high‐resolution vegetation index data and investigated the possibility of using it as a proxy of groundwater storage. Artificial intelligence‐based approaches that incorporates vegetation index data show good performance in estimating groundwater levels. The results are particularly encouraging in natural vegetation covered areas. Key Points Widely available, satellite‐based vegetation index may be used as a suitable indicator of groundwater storage Artificial intelligence estimates show good performance of vegetation index on predicting future groundwater levels Vegetation index can be used as an indicator of groundwater storage particularly at natural vegetation‐covered areas</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019GL083015</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0106-7437</orcidid><orcidid>https://orcid.org/0000-0002-0555-0875</orcidid><orcidid>https://orcid.org/0000-0002-9434-8483</orcidid><orcidid>https://orcid.org/0000-0003-3439-4282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-07, Vol.46 (14), p.8082-8092
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2272119310
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
subjects ANN
Artificial intelligence
Artificial neural networks
Computer simulation
GRACE (experiment)
Grasslands
Gravity
Groundwater
Groundwater availability
Groundwater level prediction
Groundwater levels
Groundwater resources
Groundwater storage
Groundwater table
India
Natural vegetation
NDVI
Neural networks
Normalized difference vegetative index
Observation wells
Plant cover
Resolution
Satellite observation
Satellites
Shrubs
Storage conditions
Support vector machines
SVM
Temporal resolution
Vegetation
Vegetation cover
Vegetation index
Water resources
Water table
title Using Satellite‐Based Vegetation Cover as Indicator of Groundwater Storage in Natural Vegetation Areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Satellite%E2%80%90Based%20Vegetation%20Cover%20as%20Indicator%20of%20Groundwater%20Storage%20in%20Natural%20Vegetation%20Areas&rft.jtitle=Geophysical%20research%20letters&rft.au=Bhanja,%20Soumendra%20N.&rft.date=2019-07-28&rft.volume=46&rft.issue=14&rft.spage=8082&rft.epage=8092&rft.pages=8082-8092&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL083015&rft_dat=%3Cproquest_cross%3E2272119310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272119310&rft_id=info:pmid/&rfr_iscdi=true