Dynamic response of beams under moving loads with finite deformation
A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are establis...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2019-10, Vol.98 (1), p.167-184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | 1 |
container_start_page | 167 |
container_title | Nonlinear dynamics |
container_volume | 98 |
creator | Wang, Yuanbin Zhu, Xiaowu Lou, Zhimei |
description | A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are established by the Hamilton principle. Under appropriate assumptions, the coupled model equations are simplified into a nonlinear integro-partial differential equation which incorporates a material parameter and a geometrical parameter. The dynamic response of the beam is determined with the help of the Galerkin method. The solutions show that both the material parameter and geometrical parameter have the effect of reducing the amplitude of the forced vibration, increasing the speed of the fluctuation and the critical velocity for the moving load. In comparison with small deformation formulations, the effect of finite deformation herein is to reduce the vibration amplitude, especially for slender beams. If the vibration amplitude is relatively small, the nonlinear model may be replaced by the corresponding higher-order linear model while preserving the main features of the vibration problem. |
doi_str_mv | 10.1007/s11071-019-05180-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272048164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272048164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f04922e6cf005edaee6de13d6112e157d369165680b403f54d1130d182ae49a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2ImTLFHLS6rEBqTuLDcel1SNXewU1L8nECR2rGZz7r2jw9glwjUClDcJEUrMAOsMCqwgU0dsgkUpM6Hq5TGbQC3yDGpYnrKzlDYAIAVUEzafH7zp2oZHSrvgE_Hg-IpMl_jeW4q8Cx-tX_NtMDbxz7Z_4671bU_ckguxM30b_Dk7cWab6OL3Ttnr_d3L7DFbPD88zW4XWSOx7jN0kNdCkGocQEHWEClLKK1CFDR8a6WqURWqglUO0hW5RZRgsRKG8trIKbsae3cxvO8p9XoT9tEPk1qIUkBeocoHSoxUE0NKkZzexbYz8aAR9LctPdrSgy39Y0urISTHUBpgv6b4V_1P6gvqEmwu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272048164</pqid></control><display><type>article</type><title>Dynamic response of beams under moving loads with finite deformation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yuanbin ; Zhu, Xiaowu ; Lou, Zhimei</creator><creatorcontrib>Wang, Yuanbin ; Zhu, Xiaowu ; Lou, Zhimei</creatorcontrib><description>A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are established by the Hamilton principle. Under appropriate assumptions, the coupled model equations are simplified into a nonlinear integro-partial differential equation which incorporates a material parameter and a geometrical parameter. The dynamic response of the beam is determined with the help of the Galerkin method. The solutions show that both the material parameter and geometrical parameter have the effect of reducing the amplitude of the forced vibration, increasing the speed of the fluctuation and the critical velocity for the moving load. In comparison with small deformation formulations, the effect of finite deformation herein is to reduce the vibration amplitude, especially for slender beams. If the vibration amplitude is relatively small, the nonlinear model may be replaced by the corresponding higher-order linear model while preserving the main features of the vibration problem.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05180-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amplitudes ; Automotive Engineering ; Classical Mechanics ; Control ; Critical velocity ; Deformation effects ; Differential geometry ; Dynamic response ; Dynamical Systems ; Engineering ; Forced vibration ; Formulations ; Galerkin method ; Hamilton's principle ; Mathematical models ; Mechanical Engineering ; Moving loads ; Original Paper ; Parameters ; Partial differential equations ; Variations ; Vibration ; Vibration control</subject><ispartof>Nonlinear dynamics, 2019-10, Vol.98 (1), p.167-184</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f04922e6cf005edaee6de13d6112e157d369165680b403f54d1130d182ae49a3</citedby><cites>FETCH-LOGICAL-c319t-1f04922e6cf005edaee6de13d6112e157d369165680b403f54d1130d182ae49a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-05180-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-05180-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Yuanbin</creatorcontrib><creatorcontrib>Zhu, Xiaowu</creatorcontrib><creatorcontrib>Lou, Zhimei</creatorcontrib><title>Dynamic response of beams under moving loads with finite deformation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are established by the Hamilton principle. Under appropriate assumptions, the coupled model equations are simplified into a nonlinear integro-partial differential equation which incorporates a material parameter and a geometrical parameter. The dynamic response of the beam is determined with the help of the Galerkin method. The solutions show that both the material parameter and geometrical parameter have the effect of reducing the amplitude of the forced vibration, increasing the speed of the fluctuation and the critical velocity for the moving load. In comparison with small deformation formulations, the effect of finite deformation herein is to reduce the vibration amplitude, especially for slender beams. If the vibration amplitude is relatively small, the nonlinear model may be replaced by the corresponding higher-order linear model while preserving the main features of the vibration problem.</description><subject>Amplitudes</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Critical velocity</subject><subject>Deformation effects</subject><subject>Differential geometry</subject><subject>Dynamic response</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Forced vibration</subject><subject>Formulations</subject><subject>Galerkin method</subject><subject>Hamilton's principle</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Moving loads</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Variations</subject><subject>Vibration</subject><subject>Vibration control</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2ImTLFHLS6rEBqTuLDcel1SNXewU1L8nECR2rGZz7r2jw9glwjUClDcJEUrMAOsMCqwgU0dsgkUpM6Hq5TGbQC3yDGpYnrKzlDYAIAVUEzafH7zp2oZHSrvgE_Hg-IpMl_jeW4q8Cx-tX_NtMDbxz7Z_4671bU_ckguxM30b_Dk7cWab6OL3Ttnr_d3L7DFbPD88zW4XWSOx7jN0kNdCkGocQEHWEClLKK1CFDR8a6WqURWqglUO0hW5RZRgsRKG8trIKbsae3cxvO8p9XoT9tEPk1qIUkBeocoHSoxUE0NKkZzexbYz8aAR9LctPdrSgy39Y0urISTHUBpgv6b4V_1P6gvqEmwu</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Yuanbin</creator><creator>Zhu, Xiaowu</creator><creator>Lou, Zhimei</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Dynamic response of beams under moving loads with finite deformation</title><author>Wang, Yuanbin ; Zhu, Xiaowu ; Lou, Zhimei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f04922e6cf005edaee6de13d6112e157d369165680b403f54d1130d182ae49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Critical velocity</topic><topic>Deformation effects</topic><topic>Differential geometry</topic><topic>Dynamic response</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Forced vibration</topic><topic>Formulations</topic><topic>Galerkin method</topic><topic>Hamilton's principle</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Moving loads</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Variations</topic><topic>Vibration</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuanbin</creatorcontrib><creatorcontrib>Zhu, Xiaowu</creatorcontrib><creatorcontrib>Lou, Zhimei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuanbin</au><au>Zhu, Xiaowu</au><au>Lou, Zhimei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic response of beams under moving loads with finite deformation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>98</volume><issue>1</issue><spage>167</spage><epage>184</epage><pages>167-184</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are established by the Hamilton principle. Under appropriate assumptions, the coupled model equations are simplified into a nonlinear integro-partial differential equation which incorporates a material parameter and a geometrical parameter. The dynamic response of the beam is determined with the help of the Galerkin method. The solutions show that both the material parameter and geometrical parameter have the effect of reducing the amplitude of the forced vibration, increasing the speed of the fluctuation and the critical velocity for the moving load. In comparison with small deformation formulations, the effect of finite deformation herein is to reduce the vibration amplitude, especially for slender beams. If the vibration amplitude is relatively small, the nonlinear model may be replaced by the corresponding higher-order linear model while preserving the main features of the vibration problem.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05180-6</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2019-10, Vol.98 (1), p.167-184 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2272048164 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amplitudes Automotive Engineering Classical Mechanics Control Critical velocity Deformation effects Differential geometry Dynamic response Dynamical Systems Engineering Forced vibration Formulations Galerkin method Hamilton's principle Mathematical models Mechanical Engineering Moving loads Original Paper Parameters Partial differential equations Variations Vibration Vibration control |
title | Dynamic response of beams under moving loads with finite deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20response%20of%20beams%20under%20moving%20loads%20with%20finite%20deformation&rft.jtitle=Nonlinear%20dynamics&rft.au=Wang,%20Yuanbin&rft.date=2019-10-01&rft.volume=98&rft.issue=1&rft.spage=167&rft.epage=184&rft.pages=167-184&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05180-6&rft_dat=%3Cproquest_cross%3E2272048164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272048164&rft_id=info:pmid/&rfr_iscdi=true |