Dynamic response of beams under moving loads with finite deformation

A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are establis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2019-10, Vol.98 (1), p.167-184
Hauptverfasser: Wang, Yuanbin, Zhu, Xiaowu, Lou, Zhimei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue 1
container_start_page 167
container_title Nonlinear dynamics
container_volume 98
creator Wang, Yuanbin
Zhu, Xiaowu
Lou, Zhimei
description A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are established by the Hamilton principle. Under appropriate assumptions, the coupled model equations are simplified into a nonlinear integro-partial differential equation which incorporates a material parameter and a geometrical parameter. The dynamic response of the beam is determined with the help of the Galerkin method. The solutions show that both the material parameter and geometrical parameter have the effect of reducing the amplitude of the forced vibration, increasing the speed of the fluctuation and the critical velocity for the moving load. In comparison with small deformation formulations, the effect of finite deformation herein is to reduce the vibration amplitude, especially for slender beams. If the vibration amplitude is relatively small, the nonlinear model may be replaced by the corresponding higher-order linear model while preserving the main features of the vibration problem.
doi_str_mv 10.1007/s11071-019-05180-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272048164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272048164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f04922e6cf005edaee6de13d6112e157d369165680b403f54d1130d182ae49a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2ImTLFHLS6rEBqTuLDcel1SNXewU1L8nECR2rGZz7r2jw9glwjUClDcJEUrMAOsMCqwgU0dsgkUpM6Hq5TGbQC3yDGpYnrKzlDYAIAVUEzafH7zp2oZHSrvgE_Hg-IpMl_jeW4q8Cx-tX_NtMDbxz7Z_4671bU_ckguxM30b_Dk7cWab6OL3Ttnr_d3L7DFbPD88zW4XWSOx7jN0kNdCkGocQEHWEClLKK1CFDR8a6WqURWqglUO0hW5RZRgsRKG8trIKbsae3cxvO8p9XoT9tEPk1qIUkBeocoHSoxUE0NKkZzexbYz8aAR9LctPdrSgy39Y0urISTHUBpgv6b4V_1P6gvqEmwu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272048164</pqid></control><display><type>article</type><title>Dynamic response of beams under moving loads with finite deformation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yuanbin ; Zhu, Xiaowu ; Lou, Zhimei</creator><creatorcontrib>Wang, Yuanbin ; Zhu, Xiaowu ; Lou, Zhimei</creatorcontrib><description>A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are established by the Hamilton principle. Under appropriate assumptions, the coupled model equations are simplified into a nonlinear integro-partial differential equation which incorporates a material parameter and a geometrical parameter. The dynamic response of the beam is determined with the help of the Galerkin method. The solutions show that both the material parameter and geometrical parameter have the effect of reducing the amplitude of the forced vibration, increasing the speed of the fluctuation and the critical velocity for the moving load. In comparison with small deformation formulations, the effect of finite deformation herein is to reduce the vibration amplitude, especially for slender beams. If the vibration amplitude is relatively small, the nonlinear model may be replaced by the corresponding higher-order linear model while preserving the main features of the vibration problem.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05180-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amplitudes ; Automotive Engineering ; Classical Mechanics ; Control ; Critical velocity ; Deformation effects ; Differential geometry ; Dynamic response ; Dynamical Systems ; Engineering ; Forced vibration ; Formulations ; Galerkin method ; Hamilton's principle ; Mathematical models ; Mechanical Engineering ; Moving loads ; Original Paper ; Parameters ; Partial differential equations ; Variations ; Vibration ; Vibration control</subject><ispartof>Nonlinear dynamics, 2019-10, Vol.98 (1), p.167-184</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f04922e6cf005edaee6de13d6112e157d369165680b403f54d1130d182ae49a3</citedby><cites>FETCH-LOGICAL-c319t-1f04922e6cf005edaee6de13d6112e157d369165680b403f54d1130d182ae49a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-05180-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-05180-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Yuanbin</creatorcontrib><creatorcontrib>Zhu, Xiaowu</creatorcontrib><creatorcontrib>Lou, Zhimei</creatorcontrib><title>Dynamic response of beams under moving loads with finite deformation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are established by the Hamilton principle. Under appropriate assumptions, the coupled model equations are simplified into a nonlinear integro-partial differential equation which incorporates a material parameter and a geometrical parameter. The dynamic response of the beam is determined with the help of the Galerkin method. The solutions show that both the material parameter and geometrical parameter have the effect of reducing the amplitude of the forced vibration, increasing the speed of the fluctuation and the critical velocity for the moving load. In comparison with small deformation formulations, the effect of finite deformation herein is to reduce the vibration amplitude, especially for slender beams. If the vibration amplitude is relatively small, the nonlinear model may be replaced by the corresponding higher-order linear model while preserving the main features of the vibration problem.</description><subject>Amplitudes</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Critical velocity</subject><subject>Deformation effects</subject><subject>Differential geometry</subject><subject>Dynamic response</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Forced vibration</subject><subject>Formulations</subject><subject>Galerkin method</subject><subject>Hamilton's principle</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Moving loads</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Variations</subject><subject>Vibration</subject><subject>Vibration control</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ7M2ImTLFHLS6rEBqTuLDcel1SNXewU1L8nECR2rGZz7r2jw9glwjUClDcJEUrMAOsMCqwgU0dsgkUpM6Hq5TGbQC3yDGpYnrKzlDYAIAVUEzafH7zp2oZHSrvgE_Hg-IpMl_jeW4q8Cx-tX_NtMDbxz7Z_4671bU_ckguxM30b_Dk7cWab6OL3Ttnr_d3L7DFbPD88zW4XWSOx7jN0kNdCkGocQEHWEClLKK1CFDR8a6WqURWqglUO0hW5RZRgsRKG8trIKbsae3cxvO8p9XoT9tEPk1qIUkBeocoHSoxUE0NKkZzexbYz8aAR9LctPdrSgy39Y0urISTHUBpgv6b4V_1P6gvqEmwu</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Yuanbin</creator><creator>Zhu, Xiaowu</creator><creator>Lou, Zhimei</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Dynamic response of beams under moving loads with finite deformation</title><author>Wang, Yuanbin ; Zhu, Xiaowu ; Lou, Zhimei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f04922e6cf005edaee6de13d6112e157d369165680b403f54d1130d182ae49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Critical velocity</topic><topic>Deformation effects</topic><topic>Differential geometry</topic><topic>Dynamic response</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Forced vibration</topic><topic>Formulations</topic><topic>Galerkin method</topic><topic>Hamilton's principle</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Moving loads</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Variations</topic><topic>Vibration</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuanbin</creatorcontrib><creatorcontrib>Zhu, Xiaowu</creatorcontrib><creatorcontrib>Lou, Zhimei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuanbin</au><au>Zhu, Xiaowu</au><au>Lou, Zhimei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic response of beams under moving loads with finite deformation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>98</volume><issue>1</issue><spage>167</spage><epage>184</epage><pages>167-184</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A novel material parameter-dependent model is proposed in this work to investigate the nonlinear vibration of a beam under a moving load within a finite deformation framework. For the planar vibration problem, the Lagrange strain is adopted and the resulting model equations for the beam are established by the Hamilton principle. Under appropriate assumptions, the coupled model equations are simplified into a nonlinear integro-partial differential equation which incorporates a material parameter and a geometrical parameter. The dynamic response of the beam is determined with the help of the Galerkin method. The solutions show that both the material parameter and geometrical parameter have the effect of reducing the amplitude of the forced vibration, increasing the speed of the fluctuation and the critical velocity for the moving load. In comparison with small deformation formulations, the effect of finite deformation herein is to reduce the vibration amplitude, especially for slender beams. If the vibration amplitude is relatively small, the nonlinear model may be replaced by the corresponding higher-order linear model while preserving the main features of the vibration problem.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05180-6</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2019-10, Vol.98 (1), p.167-184
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2272048164
source SpringerLink Journals - AutoHoldings
subjects Amplitudes
Automotive Engineering
Classical Mechanics
Control
Critical velocity
Deformation effects
Differential geometry
Dynamic response
Dynamical Systems
Engineering
Forced vibration
Formulations
Galerkin method
Hamilton's principle
Mathematical models
Mechanical Engineering
Moving loads
Original Paper
Parameters
Partial differential equations
Variations
Vibration
Vibration control
title Dynamic response of beams under moving loads with finite deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20response%20of%20beams%20under%20moving%20loads%20with%20finite%20deformation&rft.jtitle=Nonlinear%20dynamics&rft.au=Wang,%20Yuanbin&rft.date=2019-10-01&rft.volume=98&rft.issue=1&rft.spage=167&rft.epage=184&rft.pages=167-184&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05180-6&rft_dat=%3Cproquest_cross%3E2272048164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272048164&rft_id=info:pmid/&rfr_iscdi=true