Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves

Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2019-08, Vol.18 (8), p.3767-3780
Hauptverfasser: Walter, Michael, Shutin, Dmitriy, Matolak, David W., Schneckenburger, Nicolas, Wiedemann, Thomas, Dammann, Armin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3780
container_issue 8
container_start_page 3767
container_title IEEE transactions on wireless communications
container_volume 18
creator Walter, Michael
Shutin, Dmitriy
Matolak, David W.
Schneckenburger, Nicolas
Wiedemann, Thomas
Dammann, Armin
description Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such as the time-variant instantaneous Doppler probability density function or time-variant instantaneous characteristic function. An algebraic analysis of the time-variant Doppler probability density function (pdf) in a classical Cartesian coordinate system is only numerically tractable due to trigonometric functions in the resulting expressions. In contrast, it has been shown that by using prolate spheroidal coordinates for 2D vehicle-to-vehicle channels the algebraic analysis becomes analytically tractable. In this paper, the analysis is extended to air-to-air channels. It is shown that the time-variant Doppler pdf can be represented without trigonometric functions. The description of the Doppler frequency in prolate spheroidal coordinates allows describing it as an algebraic curve. This permits the use of algebraic methods to analyze the Doppler frequency and derive the boundaries of the resulting Doppler pdf. Using the developed tools, we have investigated exemplary air-to-air scenarios. However, the methodology can be extended to any air-to-air configuration.
doi_str_mv 10.1109/TWC.2019.2908863
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2271993538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8685784</ieee_id><sourcerecordid>2271993538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-afc1582972c0d1483b4e6bf169fe3c6531968f4b57156fc7fce2fd499e3bd10c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3AdWoek0yyLOMTRBe2ugwz6U07ZZzUZCr035vS4urcxXcunA-ha0YnjFFzN_uqJpwyM-GGaq3ECRoxKTXhvNCn-1sownipztFFSmtKWamkHKHPaV93u9QmHDx-Cz35GOqhDX0dd1jc42kbyRBIDlyt6r6HLuF5avslHlaAZysImcvNabeEJtatw9U2_kK6RGe-7hJcHXOM5o8Ps-qZvL4_vVTTV-KEEAOpvWNSc1NyRxes0KIpQDWeKeNBOCUFM0r7opElk8q70jvgflEYA6JZMOrEGN0e_m5i-NlCGuw6bGOelCznJTNGSKEzRQ-UiyGlCN5uYvudJ1pG7d6ezfbs3p492suVm0OlBYB_XCstS12IP_sfah4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271993538</pqid></control><display><type>article</type><title>Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves</title><source>IEEE Electronic Library (IEL)</source><creator>Walter, Michael ; Shutin, Dmitriy ; Matolak, David W. ; Schneckenburger, Nicolas ; Wiedemann, Thomas ; Dammann, Armin</creator><creatorcontrib>Walter, Michael ; Shutin, Dmitriy ; Matolak, David W. ; Schneckenburger, Nicolas ; Wiedemann, Thomas ; Dammann, Armin</creatorcontrib><description>Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such as the time-variant instantaneous Doppler probability density function or time-variant instantaneous characteristic function. An algebraic analysis of the time-variant Doppler probability density function (pdf) in a classical Cartesian coordinate system is only numerically tractable due to trigonometric functions in the resulting expressions. In contrast, it has been shown that by using prolate spheroidal coordinates for 2D vehicle-to-vehicle channels the algebraic analysis becomes analytically tractable. In this paper, the analysis is extended to air-to-air channels. It is shown that the time-variant Doppler pdf can be represented without trigonometric functions. The description of the Doppler frequency in prolate spheroidal coordinates allows describing it as an algebraic curve. This permits the use of algebraic methods to analyze the Doppler frequency and derive the boundaries of the resulting Doppler pdf. Using the developed tools, we have investigated exemplary air-to-air scenarios. However, the methodology can be extended to any air-to-air configuration.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2019.2908863</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft ; Algebra ; Atmospheric modeling ; Cartesian coordinates ; Channels ; Characteristic function ; Characteristic functions ; Delays ; Doppler effect ; Doppler pdf ; Economic models ; geometry-based stochastic channel modeling ; Machine-to-machine communications ; Mathematical analysis ; Mobile communication systems ; mobile-to-mobile channel ; Probability density functions ; Probability distribution functions ; prolate spheroidal coordinates ; Receivers ; Transmitters ; Trigonometric functions ; Two dimensional analysis</subject><ispartof>IEEE transactions on wireless communications, 2019-08, Vol.18 (8), p.3767-3780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-afc1582972c0d1483b4e6bf169fe3c6531968f4b57156fc7fce2fd499e3bd10c3</citedby><cites>FETCH-LOGICAL-c333t-afc1582972c0d1483b4e6bf169fe3c6531968f4b57156fc7fce2fd499e3bd10c3</cites><orcidid>0000-0002-7112-1833 ; 0000-0001-5659-8716 ; 0000-0001-9952-7555 ; 0000-0002-7469-4864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8685784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8685784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Walter, Michael</creatorcontrib><creatorcontrib>Shutin, Dmitriy</creatorcontrib><creatorcontrib>Matolak, David W.</creatorcontrib><creatorcontrib>Schneckenburger, Nicolas</creatorcontrib><creatorcontrib>Wiedemann, Thomas</creatorcontrib><creatorcontrib>Dammann, Armin</creatorcontrib><title>Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such as the time-variant instantaneous Doppler probability density function or time-variant instantaneous characteristic function. An algebraic analysis of the time-variant Doppler probability density function (pdf) in a classical Cartesian coordinate system is only numerically tractable due to trigonometric functions in the resulting expressions. In contrast, it has been shown that by using prolate spheroidal coordinates for 2D vehicle-to-vehicle channels the algebraic analysis becomes analytically tractable. In this paper, the analysis is extended to air-to-air channels. It is shown that the time-variant Doppler pdf can be represented without trigonometric functions. The description of the Doppler frequency in prolate spheroidal coordinates allows describing it as an algebraic curve. This permits the use of algebraic methods to analyze the Doppler frequency and derive the boundaries of the resulting Doppler pdf. Using the developed tools, we have investigated exemplary air-to-air scenarios. However, the methodology can be extended to any air-to-air configuration.</description><subject>Aircraft</subject><subject>Algebra</subject><subject>Atmospheric modeling</subject><subject>Cartesian coordinates</subject><subject>Channels</subject><subject>Characteristic function</subject><subject>Characteristic functions</subject><subject>Delays</subject><subject>Doppler effect</subject><subject>Doppler pdf</subject><subject>Economic models</subject><subject>geometry-based stochastic channel modeling</subject><subject>Machine-to-machine communications</subject><subject>Mathematical analysis</subject><subject>Mobile communication systems</subject><subject>mobile-to-mobile channel</subject><subject>Probability density functions</subject><subject>Probability distribution functions</subject><subject>prolate spheroidal coordinates</subject><subject>Receivers</subject><subject>Transmitters</subject><subject>Trigonometric functions</subject><subject>Two dimensional analysis</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3AdWoek0yyLOMTRBe2ugwz6U07ZZzUZCr035vS4urcxXcunA-ha0YnjFFzN_uqJpwyM-GGaq3ECRoxKTXhvNCn-1sownipztFFSmtKWamkHKHPaV93u9QmHDx-Cz35GOqhDX0dd1jc42kbyRBIDlyt6r6HLuF5avslHlaAZysImcvNabeEJtatw9U2_kK6RGe-7hJcHXOM5o8Ps-qZvL4_vVTTV-KEEAOpvWNSc1NyRxes0KIpQDWeKeNBOCUFM0r7opElk8q70jvgflEYA6JZMOrEGN0e_m5i-NlCGuw6bGOelCznJTNGSKEzRQ-UiyGlCN5uYvudJ1pG7d6ezfbs3p492suVm0OlBYB_XCstS12IP_sfah4</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Walter, Michael</creator><creator>Shutin, Dmitriy</creator><creator>Matolak, David W.</creator><creator>Schneckenburger, Nicolas</creator><creator>Wiedemann, Thomas</creator><creator>Dammann, Armin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7112-1833</orcidid><orcidid>https://orcid.org/0000-0001-5659-8716</orcidid><orcidid>https://orcid.org/0000-0001-9952-7555</orcidid><orcidid>https://orcid.org/0000-0002-7469-4864</orcidid></search><sort><creationdate>201908</creationdate><title>Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves</title><author>Walter, Michael ; Shutin, Dmitriy ; Matolak, David W. ; Schneckenburger, Nicolas ; Wiedemann, Thomas ; Dammann, Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-afc1582972c0d1483b4e6bf169fe3c6531968f4b57156fc7fce2fd499e3bd10c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aircraft</topic><topic>Algebra</topic><topic>Atmospheric modeling</topic><topic>Cartesian coordinates</topic><topic>Channels</topic><topic>Characteristic function</topic><topic>Characteristic functions</topic><topic>Delays</topic><topic>Doppler effect</topic><topic>Doppler pdf</topic><topic>Economic models</topic><topic>geometry-based stochastic channel modeling</topic><topic>Machine-to-machine communications</topic><topic>Mathematical analysis</topic><topic>Mobile communication systems</topic><topic>mobile-to-mobile channel</topic><topic>Probability density functions</topic><topic>Probability distribution functions</topic><topic>prolate spheroidal coordinates</topic><topic>Receivers</topic><topic>Transmitters</topic><topic>Trigonometric functions</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Michael</creatorcontrib><creatorcontrib>Shutin, Dmitriy</creatorcontrib><creatorcontrib>Matolak, David W.</creatorcontrib><creatorcontrib>Schneckenburger, Nicolas</creatorcontrib><creatorcontrib>Wiedemann, Thomas</creatorcontrib><creatorcontrib>Dammann, Armin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Walter, Michael</au><au>Shutin, Dmitriy</au><au>Matolak, David W.</au><au>Schneckenburger, Nicolas</au><au>Wiedemann, Thomas</au><au>Dammann, Armin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2019-08</date><risdate>2019</risdate><volume>18</volume><issue>8</issue><spage>3767</spage><epage>3780</epage><pages>3767-3780</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such as the time-variant instantaneous Doppler probability density function or time-variant instantaneous characteristic function. An algebraic analysis of the time-variant Doppler probability density function (pdf) in a classical Cartesian coordinate system is only numerically tractable due to trigonometric functions in the resulting expressions. In contrast, it has been shown that by using prolate spheroidal coordinates for 2D vehicle-to-vehicle channels the algebraic analysis becomes analytically tractable. In this paper, the analysis is extended to air-to-air channels. It is shown that the time-variant Doppler pdf can be represented without trigonometric functions. The description of the Doppler frequency in prolate spheroidal coordinates allows describing it as an algebraic curve. This permits the use of algebraic methods to analyze the Doppler frequency and derive the boundaries of the resulting Doppler pdf. Using the developed tools, we have investigated exemplary air-to-air scenarios. However, the methodology can be extended to any air-to-air configuration.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2019.2908863</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7112-1833</orcidid><orcidid>https://orcid.org/0000-0001-5659-8716</orcidid><orcidid>https://orcid.org/0000-0001-9952-7555</orcidid><orcidid>https://orcid.org/0000-0002-7469-4864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2019-08, Vol.18 (8), p.3767-3780
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2271993538
source IEEE Electronic Library (IEL)
subjects Aircraft
Algebra
Atmospheric modeling
Cartesian coordinates
Channels
Characteristic function
Characteristic functions
Delays
Doppler effect
Doppler pdf
Economic models
geometry-based stochastic channel modeling
Machine-to-machine communications
Mathematical analysis
Mobile communication systems
mobile-to-mobile channel
Probability density functions
Probability distribution functions
prolate spheroidal coordinates
Receivers
Transmitters
Trigonometric functions
Two dimensional analysis
title Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Non-Stationary%203D%20Air-to-Air%20Channels%20Using%20the%20Theory%20of%20Algebraic%20Curves&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Walter,%20Michael&rft.date=2019-08&rft.volume=18&rft.issue=8&rft.spage=3767&rft.epage=3780&rft.pages=3767-3780&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2019.2908863&rft_dat=%3Cproquest_RIE%3E2271993538%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271993538&rft_id=info:pmid/&rft_ieee_id=8685784&rfr_iscdi=true