Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves
Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2019-08, Vol.18 (8), p.3767-3780 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3780 |
---|---|
container_issue | 8 |
container_start_page | 3767 |
container_title | IEEE transactions on wireless communications |
container_volume | 18 |
creator | Walter, Michael Shutin, Dmitriy Matolak, David W. Schneckenburger, Nicolas Wiedemann, Thomas Dammann, Armin |
description | Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such as the time-variant instantaneous Doppler probability density function or time-variant instantaneous characteristic function. An algebraic analysis of the time-variant Doppler probability density function (pdf) in a classical Cartesian coordinate system is only numerically tractable due to trigonometric functions in the resulting expressions. In contrast, it has been shown that by using prolate spheroidal coordinates for 2D vehicle-to-vehicle channels the algebraic analysis becomes analytically tractable. In this paper, the analysis is extended to air-to-air channels. It is shown that the time-variant Doppler pdf can be represented without trigonometric functions. The description of the Doppler frequency in prolate spheroidal coordinates allows describing it as an algebraic curve. This permits the use of algebraic methods to analyze the Doppler frequency and derive the boundaries of the resulting Doppler pdf. Using the developed tools, we have investigated exemplary air-to-air scenarios. However, the methodology can be extended to any air-to-air configuration. |
doi_str_mv | 10.1109/TWC.2019.2908863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2271993538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8685784</ieee_id><sourcerecordid>2271993538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-afc1582972c0d1483b4e6bf169fe3c6531968f4b57156fc7fce2fd499e3bd10c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3AdWoek0yyLOMTRBe2ugwz6U07ZZzUZCr035vS4urcxXcunA-ha0YnjFFzN_uqJpwyM-GGaq3ECRoxKTXhvNCn-1sownipztFFSmtKWamkHKHPaV93u9QmHDx-Cz35GOqhDX0dd1jc42kbyRBIDlyt6r6HLuF5avslHlaAZysImcvNabeEJtatw9U2_kK6RGe-7hJcHXOM5o8Ps-qZvL4_vVTTV-KEEAOpvWNSc1NyRxes0KIpQDWeKeNBOCUFM0r7opElk8q70jvgflEYA6JZMOrEGN0e_m5i-NlCGuw6bGOelCznJTNGSKEzRQ-UiyGlCN5uYvudJ1pG7d6ezfbs3p492suVm0OlBYB_XCstS12IP_sfah4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271993538</pqid></control><display><type>article</type><title>Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves</title><source>IEEE Electronic Library (IEL)</source><creator>Walter, Michael ; Shutin, Dmitriy ; Matolak, David W. ; Schneckenburger, Nicolas ; Wiedemann, Thomas ; Dammann, Armin</creator><creatorcontrib>Walter, Michael ; Shutin, Dmitriy ; Matolak, David W. ; Schneckenburger, Nicolas ; Wiedemann, Thomas ; Dammann, Armin</creatorcontrib><description>Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such as the time-variant instantaneous Doppler probability density function or time-variant instantaneous characteristic function. An algebraic analysis of the time-variant Doppler probability density function (pdf) in a classical Cartesian coordinate system is only numerically tractable due to trigonometric functions in the resulting expressions. In contrast, it has been shown that by using prolate spheroidal coordinates for 2D vehicle-to-vehicle channels the algebraic analysis becomes analytically tractable. In this paper, the analysis is extended to air-to-air channels. It is shown that the time-variant Doppler pdf can be represented without trigonometric functions. The description of the Doppler frequency in prolate spheroidal coordinates allows describing it as an algebraic curve. This permits the use of algebraic methods to analyze the Doppler frequency and derive the boundaries of the resulting Doppler pdf. Using the developed tools, we have investigated exemplary air-to-air scenarios. However, the methodology can be extended to any air-to-air configuration.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2019.2908863</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft ; Algebra ; Atmospheric modeling ; Cartesian coordinates ; Channels ; Characteristic function ; Characteristic functions ; Delays ; Doppler effect ; Doppler pdf ; Economic models ; geometry-based stochastic channel modeling ; Machine-to-machine communications ; Mathematical analysis ; Mobile communication systems ; mobile-to-mobile channel ; Probability density functions ; Probability distribution functions ; prolate spheroidal coordinates ; Receivers ; Transmitters ; Trigonometric functions ; Two dimensional analysis</subject><ispartof>IEEE transactions on wireless communications, 2019-08, Vol.18 (8), p.3767-3780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-afc1582972c0d1483b4e6bf169fe3c6531968f4b57156fc7fce2fd499e3bd10c3</citedby><cites>FETCH-LOGICAL-c333t-afc1582972c0d1483b4e6bf169fe3c6531968f4b57156fc7fce2fd499e3bd10c3</cites><orcidid>0000-0002-7112-1833 ; 0000-0001-5659-8716 ; 0000-0001-9952-7555 ; 0000-0002-7469-4864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8685784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8685784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Walter, Michael</creatorcontrib><creatorcontrib>Shutin, Dmitriy</creatorcontrib><creatorcontrib>Matolak, David W.</creatorcontrib><creatorcontrib>Schneckenburger, Nicolas</creatorcontrib><creatorcontrib>Wiedemann, Thomas</creatorcontrib><creatorcontrib>Dammann, Armin</creatorcontrib><title>Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such as the time-variant instantaneous Doppler probability density function or time-variant instantaneous characteristic function. An algebraic analysis of the time-variant Doppler probability density function (pdf) in a classical Cartesian coordinate system is only numerically tractable due to trigonometric functions in the resulting expressions. In contrast, it has been shown that by using prolate spheroidal coordinates for 2D vehicle-to-vehicle channels the algebraic analysis becomes analytically tractable. In this paper, the analysis is extended to air-to-air channels. It is shown that the time-variant Doppler pdf can be represented without trigonometric functions. The description of the Doppler frequency in prolate spheroidal coordinates allows describing it as an algebraic curve. This permits the use of algebraic methods to analyze the Doppler frequency and derive the boundaries of the resulting Doppler pdf. Using the developed tools, we have investigated exemplary air-to-air scenarios. However, the methodology can be extended to any air-to-air configuration.</description><subject>Aircraft</subject><subject>Algebra</subject><subject>Atmospheric modeling</subject><subject>Cartesian coordinates</subject><subject>Channels</subject><subject>Characteristic function</subject><subject>Characteristic functions</subject><subject>Delays</subject><subject>Doppler effect</subject><subject>Doppler pdf</subject><subject>Economic models</subject><subject>geometry-based stochastic channel modeling</subject><subject>Machine-to-machine communications</subject><subject>Mathematical analysis</subject><subject>Mobile communication systems</subject><subject>mobile-to-mobile channel</subject><subject>Probability density functions</subject><subject>Probability distribution functions</subject><subject>prolate spheroidal coordinates</subject><subject>Receivers</subject><subject>Transmitters</subject><subject>Trigonometric functions</subject><subject>Two dimensional analysis</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3AdWoek0yyLOMTRBe2ugwz6U07ZZzUZCr035vS4urcxXcunA-ha0YnjFFzN_uqJpwyM-GGaq3ECRoxKTXhvNCn-1sownipztFFSmtKWamkHKHPaV93u9QmHDx-Cz35GOqhDX0dd1jc42kbyRBIDlyt6r6HLuF5avslHlaAZysImcvNabeEJtatw9U2_kK6RGe-7hJcHXOM5o8Ps-qZvL4_vVTTV-KEEAOpvWNSc1NyRxes0KIpQDWeKeNBOCUFM0r7opElk8q70jvgflEYA6JZMOrEGN0e_m5i-NlCGuw6bGOelCznJTNGSKEzRQ-UiyGlCN5uYvudJ1pG7d6ezfbs3p492suVm0OlBYB_XCstS12IP_sfah4</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Walter, Michael</creator><creator>Shutin, Dmitriy</creator><creator>Matolak, David W.</creator><creator>Schneckenburger, Nicolas</creator><creator>Wiedemann, Thomas</creator><creator>Dammann, Armin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7112-1833</orcidid><orcidid>https://orcid.org/0000-0001-5659-8716</orcidid><orcidid>https://orcid.org/0000-0001-9952-7555</orcidid><orcidid>https://orcid.org/0000-0002-7469-4864</orcidid></search><sort><creationdate>201908</creationdate><title>Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves</title><author>Walter, Michael ; Shutin, Dmitriy ; Matolak, David W. ; Schneckenburger, Nicolas ; Wiedemann, Thomas ; Dammann, Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-afc1582972c0d1483b4e6bf169fe3c6531968f4b57156fc7fce2fd499e3bd10c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aircraft</topic><topic>Algebra</topic><topic>Atmospheric modeling</topic><topic>Cartesian coordinates</topic><topic>Channels</topic><topic>Characteristic function</topic><topic>Characteristic functions</topic><topic>Delays</topic><topic>Doppler effect</topic><topic>Doppler pdf</topic><topic>Economic models</topic><topic>geometry-based stochastic channel modeling</topic><topic>Machine-to-machine communications</topic><topic>Mathematical analysis</topic><topic>Mobile communication systems</topic><topic>mobile-to-mobile channel</topic><topic>Probability density functions</topic><topic>Probability distribution functions</topic><topic>prolate spheroidal coordinates</topic><topic>Receivers</topic><topic>Transmitters</topic><topic>Trigonometric functions</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Michael</creatorcontrib><creatorcontrib>Shutin, Dmitriy</creatorcontrib><creatorcontrib>Matolak, David W.</creatorcontrib><creatorcontrib>Schneckenburger, Nicolas</creatorcontrib><creatorcontrib>Wiedemann, Thomas</creatorcontrib><creatorcontrib>Dammann, Armin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Walter, Michael</au><au>Shutin, Dmitriy</au><au>Matolak, David W.</au><au>Schneckenburger, Nicolas</au><au>Wiedemann, Thomas</au><au>Dammann, Armin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2019-08</date><risdate>2019</risdate><volume>18</volume><issue>8</issue><spage>3767</spage><epage>3780</epage><pages>3767-3780</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Non-stationary channel models play a crucial role in today's communication systems. Mobile-to-mobile channels are known to exhibit non-stationary behavior caused by the movement of transmitter and receiver. Non-stationarity can be addressed by introducing time-variant stochastic functions such as the time-variant instantaneous Doppler probability density function or time-variant instantaneous characteristic function. An algebraic analysis of the time-variant Doppler probability density function (pdf) in a classical Cartesian coordinate system is only numerically tractable due to trigonometric functions in the resulting expressions. In contrast, it has been shown that by using prolate spheroidal coordinates for 2D vehicle-to-vehicle channels the algebraic analysis becomes analytically tractable. In this paper, the analysis is extended to air-to-air channels. It is shown that the time-variant Doppler pdf can be represented without trigonometric functions. The description of the Doppler frequency in prolate spheroidal coordinates allows describing it as an algebraic curve. This permits the use of algebraic methods to analyze the Doppler frequency and derive the boundaries of the resulting Doppler pdf. Using the developed tools, we have investigated exemplary air-to-air scenarios. However, the methodology can be extended to any air-to-air configuration.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2019.2908863</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7112-1833</orcidid><orcidid>https://orcid.org/0000-0001-5659-8716</orcidid><orcidid>https://orcid.org/0000-0001-9952-7555</orcidid><orcidid>https://orcid.org/0000-0002-7469-4864</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2019-08, Vol.18 (8), p.3767-3780 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2271993538 |
source | IEEE Electronic Library (IEL) |
subjects | Aircraft Algebra Atmospheric modeling Cartesian coordinates Channels Characteristic function Characteristic functions Delays Doppler effect Doppler pdf Economic models geometry-based stochastic channel modeling Machine-to-machine communications Mathematical analysis Mobile communication systems mobile-to-mobile channel Probability density functions Probability distribution functions prolate spheroidal coordinates Receivers Transmitters Trigonometric functions Two dimensional analysis |
title | Analysis of Non-Stationary 3D Air-to-Air Channels Using the Theory of Algebraic Curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Non-Stationary%203D%20Air-to-Air%20Channels%20Using%20the%20Theory%20of%20Algebraic%20Curves&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Walter,%20Michael&rft.date=2019-08&rft.volume=18&rft.issue=8&rft.spage=3767&rft.epage=3780&rft.pages=3767-3780&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2019.2908863&rft_dat=%3Cproquest_RIE%3E2271993538%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271993538&rft_id=info:pmid/&rft_ieee_id=8685784&rfr_iscdi=true |