Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements
Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite so...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2019-01, Vol.6 (7), p.1497-1503 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1503 |
---|---|
container_issue | 7 |
container_start_page | 1497 |
container_title | Materials horizons |
container_volume | 6 |
creator | Futscher, Moritz H Ju Min Lee McGovern, Lucie Muscarella, Loreta A Wang, Tianyi Haider, Muhammad Irfan Fakharuddin, Azhar Schmidt-Mende, Lukas Ehrler, Bruno |
description | Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I−) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I− ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I− ions in our samples. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells. |
doi_str_mv | 10.1039/c9mh00445a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2271915324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2271915324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d02b86dd26ebc4b40819b17d588c37a7f5445b595d2a96e69c499ceb73f671313</originalsourceid><addsrcrecordid>eNo9j81KxDAYRYMoOIyz8QkCrqtJvqRpllLUGRj8AV0PSZpqapvWJBV8-xkZcXUuZ3EvF6FLSq4pAXVj1fBBCOdCn6AFI4IWJQhx-p-5PEerlDpCCAUuSEUWqHuZdci-9VZnPwY8tvgXg3-PR-EDrtfwuIZnswE8uTh-p0-fHU5jryO2ru8TNj84Rx2SdyFjqydtfdbBOjw4nebohoNPF-is1X1yqz8u0dv93Wu9LrZPD5v6dltYYDIXDWGmKpuGlc5YbjipqDJUNqKqLEgtW3F4aIQSDdOqdKWyXCnrjIS2lBQoLNHVsXeK49fsUt514xzDYXLHmKSKCmAc9oLLWmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271915324</pqid></control><display><type>article</type><title>Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Futscher, Moritz H ; Ju Min Lee ; McGovern, Lucie ; Muscarella, Loreta A ; Wang, Tianyi ; Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Schmidt-Mende, Lukas ; Ehrler, Bruno</creator><creatorcontrib>Futscher, Moritz H ; Ju Min Lee ; McGovern, Lucie ; Muscarella, Loreta A ; Wang, Tianyi ; Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Schmidt-Mende, Lukas ; Ehrler, Bruno</creatorcontrib><description>Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I−) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I− ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I− ions in our samples. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/c9mh00445a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Current voltage characteristics ; Degradation ; Diffusion coefficient ; Drift ; Ion migration ; Orthorhombic phase ; Perovskites ; Phase transitions ; Photovoltaic cells ; Solar cells ; Transition temperature</subject><ispartof>Materials horizons, 2019-01, Vol.6 (7), p.1497-1503</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d02b86dd26ebc4b40819b17d588c37a7f5445b595d2a96e69c499ceb73f671313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Futscher, Moritz H</creatorcontrib><creatorcontrib>Ju Min Lee</creatorcontrib><creatorcontrib>McGovern, Lucie</creatorcontrib><creatorcontrib>Muscarella, Loreta A</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Haider, Muhammad Irfan</creatorcontrib><creatorcontrib>Fakharuddin, Azhar</creatorcontrib><creatorcontrib>Schmidt-Mende, Lukas</creatorcontrib><creatorcontrib>Ehrler, Bruno</creatorcontrib><title>Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements</title><title>Materials horizons</title><description>Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I−) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I− ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I− ions in our samples. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.</description><subject>Current voltage characteristics</subject><subject>Degradation</subject><subject>Diffusion coefficient</subject><subject>Drift</subject><subject>Ion migration</subject><subject>Orthorhombic phase</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Transition temperature</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9j81KxDAYRYMoOIyz8QkCrqtJvqRpllLUGRj8AV0PSZpqapvWJBV8-xkZcXUuZ3EvF6FLSq4pAXVj1fBBCOdCn6AFI4IWJQhx-p-5PEerlDpCCAUuSEUWqHuZdci-9VZnPwY8tvgXg3-PR-EDrtfwuIZnswE8uTh-p0-fHU5jryO2ru8TNj84Rx2SdyFjqydtfdbBOjw4nebohoNPF-is1X1yqz8u0dv93Wu9LrZPD5v6dltYYDIXDWGmKpuGlc5YbjipqDJUNqKqLEgtW3F4aIQSDdOqdKWyXCnrjIS2lBQoLNHVsXeK49fsUt514xzDYXLHmKSKCmAc9oLLWmE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Futscher, Moritz H</creator><creator>Ju Min Lee</creator><creator>McGovern, Lucie</creator><creator>Muscarella, Loreta A</creator><creator>Wang, Tianyi</creator><creator>Haider, Muhammad Irfan</creator><creator>Fakharuddin, Azhar</creator><creator>Schmidt-Mende, Lukas</creator><creator>Ehrler, Bruno</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190101</creationdate><title>Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements</title><author>Futscher, Moritz H ; Ju Min Lee ; McGovern, Lucie ; Muscarella, Loreta A ; Wang, Tianyi ; Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Schmidt-Mende, Lukas ; Ehrler, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d02b86dd26ebc4b40819b17d588c37a7f5445b595d2a96e69c499ceb73f671313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Current voltage characteristics</topic><topic>Degradation</topic><topic>Diffusion coefficient</topic><topic>Drift</topic><topic>Ion migration</topic><topic>Orthorhombic phase</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Futscher, Moritz H</creatorcontrib><creatorcontrib>Ju Min Lee</creatorcontrib><creatorcontrib>McGovern, Lucie</creatorcontrib><creatorcontrib>Muscarella, Loreta A</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Haider, Muhammad Irfan</creatorcontrib><creatorcontrib>Fakharuddin, Azhar</creatorcontrib><creatorcontrib>Schmidt-Mende, Lukas</creatorcontrib><creatorcontrib>Ehrler, Bruno</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Futscher, Moritz H</au><au>Ju Min Lee</au><au>McGovern, Lucie</au><au>Muscarella, Loreta A</au><au>Wang, Tianyi</au><au>Haider, Muhammad Irfan</au><au>Fakharuddin, Azhar</au><au>Schmidt-Mende, Lukas</au><au>Ehrler, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements</atitle><jtitle>Materials horizons</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>6</volume><issue>7</issue><spage>1497</spage><epage>1503</epage><pages>1497-1503</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I−) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I− ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I− ions in our samples. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9mh00445a</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2019-01, Vol.6 (7), p.1497-1503 |
issn | 2051-6347 2051-6355 |
language | eng |
recordid | cdi_proquest_journals_2271915324 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Current voltage characteristics Degradation Diffusion coefficient Drift Ion migration Orthorhombic phase Perovskites Phase transitions Photovoltaic cells Solar cells Transition temperature |
title | Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20ion%20migration%20in%20CH3NH3PbI3%20perovskite%20solar%20cells%20by%20transient%20capacitance%20measurements&rft.jtitle=Materials%20horizons&rft.au=Futscher,%20Moritz%20H&rft.date=2019-01-01&rft.volume=6&rft.issue=7&rft.spage=1497&rft.epage=1503&rft.pages=1497-1503&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/c9mh00445a&rft_dat=%3Cproquest%3E2271915324%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271915324&rft_id=info:pmid/&rfr_iscdi=true |