Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements

Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2019-01, Vol.6 (7), p.1497-1503
Hauptverfasser: Futscher, Moritz H, Ju Min Lee, McGovern, Lucie, Muscarella, Loreta A, Wang, Tianyi, Haider, Muhammad Irfan, Fakharuddin, Azhar, Schmidt-Mende, Lukas, Ehrler, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1503
container_issue 7
container_start_page 1497
container_title Materials horizons
container_volume 6
creator Futscher, Moritz H
Ju Min Lee
McGovern, Lucie
Muscarella, Loreta A
Wang, Tianyi
Haider, Muhammad Irfan
Fakharuddin, Azhar
Schmidt-Mende, Lukas
Ehrler, Bruno
description Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I−) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I− ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I− ions in our samples. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.
doi_str_mv 10.1039/c9mh00445a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2271915324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2271915324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d02b86dd26ebc4b40819b17d588c37a7f5445b595d2a96e69c499ceb73f671313</originalsourceid><addsrcrecordid>eNo9j81KxDAYRYMoOIyz8QkCrqtJvqRpllLUGRj8AV0PSZpqapvWJBV8-xkZcXUuZ3EvF6FLSq4pAXVj1fBBCOdCn6AFI4IWJQhx-p-5PEerlDpCCAUuSEUWqHuZdci-9VZnPwY8tvgXg3-PR-EDrtfwuIZnswE8uTh-p0-fHU5jryO2ru8TNj84Rx2SdyFjqydtfdbBOjw4nebohoNPF-is1X1yqz8u0dv93Wu9LrZPD5v6dltYYDIXDWGmKpuGlc5YbjipqDJUNqKqLEgtW3F4aIQSDdOqdKWyXCnrjIS2lBQoLNHVsXeK49fsUt514xzDYXLHmKSKCmAc9oLLWmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271915324</pqid></control><display><type>article</type><title>Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Futscher, Moritz H ; Ju Min Lee ; McGovern, Lucie ; Muscarella, Loreta A ; Wang, Tianyi ; Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Schmidt-Mende, Lukas ; Ehrler, Bruno</creator><creatorcontrib>Futscher, Moritz H ; Ju Min Lee ; McGovern, Lucie ; Muscarella, Loreta A ; Wang, Tianyi ; Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Schmidt-Mende, Lukas ; Ehrler, Bruno</creatorcontrib><description>Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I−) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I− ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I− ions in our samples. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/c9mh00445a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Current voltage characteristics ; Degradation ; Diffusion coefficient ; Drift ; Ion migration ; Orthorhombic phase ; Perovskites ; Phase transitions ; Photovoltaic cells ; Solar cells ; Transition temperature</subject><ispartof>Materials horizons, 2019-01, Vol.6 (7), p.1497-1503</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d02b86dd26ebc4b40819b17d588c37a7f5445b595d2a96e69c499ceb73f671313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Futscher, Moritz H</creatorcontrib><creatorcontrib>Ju Min Lee</creatorcontrib><creatorcontrib>McGovern, Lucie</creatorcontrib><creatorcontrib>Muscarella, Loreta A</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Haider, Muhammad Irfan</creatorcontrib><creatorcontrib>Fakharuddin, Azhar</creatorcontrib><creatorcontrib>Schmidt-Mende, Lukas</creatorcontrib><creatorcontrib>Ehrler, Bruno</creatorcontrib><title>Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements</title><title>Materials horizons</title><description>Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I−) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I− ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I− ions in our samples. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.</description><subject>Current voltage characteristics</subject><subject>Degradation</subject><subject>Diffusion coefficient</subject><subject>Drift</subject><subject>Ion migration</subject><subject>Orthorhombic phase</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Transition temperature</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9j81KxDAYRYMoOIyz8QkCrqtJvqRpllLUGRj8AV0PSZpqapvWJBV8-xkZcXUuZ3EvF6FLSq4pAXVj1fBBCOdCn6AFI4IWJQhx-p-5PEerlDpCCAUuSEUWqHuZdci-9VZnPwY8tvgXg3-PR-EDrtfwuIZnswE8uTh-p0-fHU5jryO2ru8TNj84Rx2SdyFjqydtfdbBOjw4nebohoNPF-is1X1yqz8u0dv93Wu9LrZPD5v6dltYYDIXDWGmKpuGlc5YbjipqDJUNqKqLEgtW3F4aIQSDdOqdKWyXCnrjIS2lBQoLNHVsXeK49fsUt514xzDYXLHmKSKCmAc9oLLWmE</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Futscher, Moritz H</creator><creator>Ju Min Lee</creator><creator>McGovern, Lucie</creator><creator>Muscarella, Loreta A</creator><creator>Wang, Tianyi</creator><creator>Haider, Muhammad Irfan</creator><creator>Fakharuddin, Azhar</creator><creator>Schmidt-Mende, Lukas</creator><creator>Ehrler, Bruno</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190101</creationdate><title>Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements</title><author>Futscher, Moritz H ; Ju Min Lee ; McGovern, Lucie ; Muscarella, Loreta A ; Wang, Tianyi ; Haider, Muhammad Irfan ; Fakharuddin, Azhar ; Schmidt-Mende, Lukas ; Ehrler, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d02b86dd26ebc4b40819b17d588c37a7f5445b595d2a96e69c499ceb73f671313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Current voltage characteristics</topic><topic>Degradation</topic><topic>Diffusion coefficient</topic><topic>Drift</topic><topic>Ion migration</topic><topic>Orthorhombic phase</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Futscher, Moritz H</creatorcontrib><creatorcontrib>Ju Min Lee</creatorcontrib><creatorcontrib>McGovern, Lucie</creatorcontrib><creatorcontrib>Muscarella, Loreta A</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Haider, Muhammad Irfan</creatorcontrib><creatorcontrib>Fakharuddin, Azhar</creatorcontrib><creatorcontrib>Schmidt-Mende, Lukas</creatorcontrib><creatorcontrib>Ehrler, Bruno</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Futscher, Moritz H</au><au>Ju Min Lee</au><au>McGovern, Lucie</au><au>Muscarella, Loreta A</au><au>Wang, Tianyi</au><au>Haider, Muhammad Irfan</au><au>Fakharuddin, Azhar</au><au>Schmidt-Mende, Lukas</au><au>Ehrler, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements</atitle><jtitle>Materials horizons</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>6</volume><issue>7</issue><spage>1497</spage><epage>1503</epage><pages>1497-1503</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Ion migration in halide perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I−) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I− ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I− ions in our samples. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9mh00445a</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2019-01, Vol.6 (7), p.1497-1503
issn 2051-6347
2051-6355
language eng
recordid cdi_proquest_journals_2271915324
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Current voltage characteristics
Degradation
Diffusion coefficient
Drift
Ion migration
Orthorhombic phase
Perovskites
Phase transitions
Photovoltaic cells
Solar cells
Transition temperature
title Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20ion%20migration%20in%20CH3NH3PbI3%20perovskite%20solar%20cells%20by%20transient%20capacitance%20measurements&rft.jtitle=Materials%20horizons&rft.au=Futscher,%20Moritz%20H&rft.date=2019-01-01&rft.volume=6&rft.issue=7&rft.spage=1497&rft.epage=1503&rft.pages=1497-1503&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/c9mh00445a&rft_dat=%3Cproquest%3E2271915324%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271915324&rft_id=info:pmid/&rfr_iscdi=true