Estimation of data uncertainty in the absence of replicate experiments

[Display omitted] •A method to estimate experimental uncertainty for data without replications.•The method modifies residuals of the best-fit regression model and aggregates them.•Uncertainty estimates concur with true distributions in computational experiments.•Uncertainty of sand erosion measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2019-07, Vol.147, p.187-199
Hauptverfasser: Dai, Wei, Cremaschi, Selen, Subramani, Hariprasad J., Gao, Haijing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue
container_start_page 187
container_title Chemical engineering research & design
container_volume 147
creator Dai, Wei
Cremaschi, Selen
Subramani, Hariprasad J.
Gao, Haijing
description [Display omitted] •A method to estimate experimental uncertainty for data without replications.•The method modifies residuals of the best-fit regression model and aggregates them.•Uncertainty estimates concur with true distributions in computational experiments.•Uncertainty of sand erosion measurements are estimated using the method.•The estimates agree with the values reported in literature and with expert opinions. There are many data sets in the literature without uncertainty information. This paper introduces a novel approach to estimate data uncertainty where replicate experiments are not available. For a physical phenomenon, the dependent variable generally changes smoothly with small changes in each independent variable while other independent variables are kept constant. We hypothesize that if experimental data in this form is available, the relationship between the dependent variable and each independent variable may be approximated with the best fit regression model and that the residuals of these models can be aggregated to estimate the uncertainty of the dependent variable measurements. The statistical tests calculated using the computational experiments support the hypothesis. As a case study, erosion-rate measurement uncertainty is estimated using the approach. The results reveal that the uncertainty estimates of the erosion-rate measurements are in good agreement with expert opinions and with values reported in the literature.
doi_str_mv 10.1016/j.cherd.2019.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2270508154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876219302175</els_id><sourcerecordid>2270508154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cc294ace3a067fa0f5befa76ac66f033f0aeba74aebe9c8f8b103e97c5d6dbf93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1giMSec49hOBgZUlQ-pEgvMluOcVUdtEmwX0X-PQ5lZ7qS7972Ph5BbCgUFKu77wmzRd0UJtCmAFwDyjCyorKqcccHOyQJKwfJaivKSXIXQA0Dq1gvytA7R7XV045CNNut01NlhMOijdkM8Zm7I4hYz3QZM1Vnicdo5oyNm-D2hd3scYrgmF1bvAt785SX5eFq_r17yzdvz6-pxkxsm6pgbUzaVNsg0CGk1WN6i1VJoI4QFxixobLWsUsTG1LZuKTBspOGd6FrbsCW5O82d_Ph5wBBVPx78kFaqspTAoaa8Sip2Uhk_huDRqindqf1RUVAzMNWrX2BqBqaAqwQsuR5OLkwPfDn0Khg3f905jyaqbnT_-n8AnNp2qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270508154</pqid></control><display><type>article</type><title>Estimation of data uncertainty in the absence of replicate experiments</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dai, Wei ; Cremaschi, Selen ; Subramani, Hariprasad J. ; Gao, Haijing</creator><creatorcontrib>Dai, Wei ; Cremaschi, Selen ; Subramani, Hariprasad J. ; Gao, Haijing</creatorcontrib><description>[Display omitted] •A method to estimate experimental uncertainty for data without replications.•The method modifies residuals of the best-fit regression model and aggregates them.•Uncertainty estimates concur with true distributions in computational experiments.•Uncertainty of sand erosion measurements are estimated using the method.•The estimates agree with the values reported in literature and with expert opinions. There are many data sets in the literature without uncertainty information. This paper introduces a novel approach to estimate data uncertainty where replicate experiments are not available. For a physical phenomenon, the dependent variable generally changes smoothly with small changes in each independent variable while other independent variables are kept constant. We hypothesize that if experimental data in this form is available, the relationship between the dependent variable and each independent variable may be approximated with the best fit regression model and that the residuals of these models can be aggregated to estimate the uncertainty of the dependent variable measurements. The statistical tests calculated using the computational experiments support the hypothesis. As a case study, erosion-rate measurement uncertainty is estimated using the approach. The results reveal that the uncertainty estimates of the erosion-rate measurements are in good agreement with expert opinions and with values reported in the literature.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2019.05.007</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Data uncertainty ; Dependent variables ; Erosion mechanisms ; Erosion process ; Erosion rates ; Experimental measurement ; Experiments ; Independent variables ; Noise ; Regression analysis ; Regression models ; Statistical analysis ; Statistical tests ; Uncertainty</subject><ispartof>Chemical engineering research &amp; design, 2019-07, Vol.147, p.187-199</ispartof><rights>2019 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cc294ace3a067fa0f5befa76ac66f033f0aeba74aebe9c8f8b103e97c5d6dbf93</citedby><cites>FETCH-LOGICAL-c368t-cc294ace3a067fa0f5befa76ac66f033f0aeba74aebe9c8f8b103e97c5d6dbf93</cites><orcidid>0000-0002-8095-3594 ; 0000-0002-9333-344X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2019.05.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Cremaschi, Selen</creatorcontrib><creatorcontrib>Subramani, Hariprasad J.</creatorcontrib><creatorcontrib>Gao, Haijing</creatorcontrib><title>Estimation of data uncertainty in the absence of replicate experiments</title><title>Chemical engineering research &amp; design</title><description>[Display omitted] •A method to estimate experimental uncertainty for data without replications.•The method modifies residuals of the best-fit regression model and aggregates them.•Uncertainty estimates concur with true distributions in computational experiments.•Uncertainty of sand erosion measurements are estimated using the method.•The estimates agree with the values reported in literature and with expert opinions. There are many data sets in the literature without uncertainty information. This paper introduces a novel approach to estimate data uncertainty where replicate experiments are not available. For a physical phenomenon, the dependent variable generally changes smoothly with small changes in each independent variable while other independent variables are kept constant. We hypothesize that if experimental data in this form is available, the relationship between the dependent variable and each independent variable may be approximated with the best fit regression model and that the residuals of these models can be aggregated to estimate the uncertainty of the dependent variable measurements. The statistical tests calculated using the computational experiments support the hypothesis. As a case study, erosion-rate measurement uncertainty is estimated using the approach. The results reveal that the uncertainty estimates of the erosion-rate measurements are in good agreement with expert opinions and with values reported in the literature.</description><subject>Data uncertainty</subject><subject>Dependent variables</subject><subject>Erosion mechanisms</subject><subject>Erosion process</subject><subject>Erosion rates</subject><subject>Experimental measurement</subject><subject>Experiments</subject><subject>Independent variables</subject><subject>Noise</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Uncertainty</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1giMSec49hOBgZUlQ-pEgvMluOcVUdtEmwX0X-PQ5lZ7qS7972Ph5BbCgUFKu77wmzRd0UJtCmAFwDyjCyorKqcccHOyQJKwfJaivKSXIXQA0Dq1gvytA7R7XV045CNNut01NlhMOijdkM8Zm7I4hYz3QZM1Vnicdo5oyNm-D2hd3scYrgmF1bvAt785SX5eFq_r17yzdvz6-pxkxsm6pgbUzaVNsg0CGk1WN6i1VJoI4QFxixobLWsUsTG1LZuKTBspOGd6FrbsCW5O82d_Ph5wBBVPx78kFaqspTAoaa8Sip2Uhk_huDRqindqf1RUVAzMNWrX2BqBqaAqwQsuR5OLkwPfDn0Khg3f905jyaqbnT_-n8AnNp2qw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Dai, Wei</creator><creator>Cremaschi, Selen</creator><creator>Subramani, Hariprasad J.</creator><creator>Gao, Haijing</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8095-3594</orcidid><orcidid>https://orcid.org/0000-0002-9333-344X</orcidid></search><sort><creationdate>20190701</creationdate><title>Estimation of data uncertainty in the absence of replicate experiments</title><author>Dai, Wei ; Cremaschi, Selen ; Subramani, Hariprasad J. ; Gao, Haijing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cc294ace3a067fa0f5befa76ac66f033f0aeba74aebe9c8f8b103e97c5d6dbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data uncertainty</topic><topic>Dependent variables</topic><topic>Erosion mechanisms</topic><topic>Erosion process</topic><topic>Erosion rates</topic><topic>Experimental measurement</topic><topic>Experiments</topic><topic>Independent variables</topic><topic>Noise</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Cremaschi, Selen</creatorcontrib><creatorcontrib>Subramani, Hariprasad J.</creatorcontrib><creatorcontrib>Gao, Haijing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Wei</au><au>Cremaschi, Selen</au><au>Subramani, Hariprasad J.</au><au>Gao, Haijing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of data uncertainty in the absence of replicate experiments</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>147</volume><spage>187</spage><epage>199</epage><pages>187-199</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>[Display omitted] •A method to estimate experimental uncertainty for data without replications.•The method modifies residuals of the best-fit regression model and aggregates them.•Uncertainty estimates concur with true distributions in computational experiments.•Uncertainty of sand erosion measurements are estimated using the method.•The estimates agree with the values reported in literature and with expert opinions. There are many data sets in the literature without uncertainty information. This paper introduces a novel approach to estimate data uncertainty where replicate experiments are not available. For a physical phenomenon, the dependent variable generally changes smoothly with small changes in each independent variable while other independent variables are kept constant. We hypothesize that if experimental data in this form is available, the relationship between the dependent variable and each independent variable may be approximated with the best fit regression model and that the residuals of these models can be aggregated to estimate the uncertainty of the dependent variable measurements. The statistical tests calculated using the computational experiments support the hypothesis. As a case study, erosion-rate measurement uncertainty is estimated using the approach. The results reveal that the uncertainty estimates of the erosion-rate measurements are in good agreement with expert opinions and with values reported in the literature.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2019.05.007</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8095-3594</orcidid><orcidid>https://orcid.org/0000-0002-9333-344X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2019-07, Vol.147, p.187-199
issn 0263-8762
1744-3563
language eng
recordid cdi_proquest_journals_2270508154
source Elsevier ScienceDirect Journals Complete
subjects Data uncertainty
Dependent variables
Erosion mechanisms
Erosion process
Erosion rates
Experimental measurement
Experiments
Independent variables
Noise
Regression analysis
Regression models
Statistical analysis
Statistical tests
Uncertainty
title Estimation of data uncertainty in the absence of replicate experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20data%20uncertainty%20in%20the%20absence%20of%20replicate%20experiments&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Dai,%20Wei&rft.date=2019-07-01&rft.volume=147&rft.spage=187&rft.epage=199&rft.pages=187-199&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2019.05.007&rft_dat=%3Cproquest_cross%3E2270508154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270508154&rft_id=info:pmid/&rft_els_id=S0263876219302175&rfr_iscdi=true