Environmental Controls on the Riverine Export of Dissolved Black Carbon
Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and...
Gespeichert in:
Veröffentlicht in: | Global biogeochemical cycles 2019-07, Vol.33 (7), p.849-874 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 874 |
---|---|
container_issue | 7 |
container_start_page | 849 |
container_title | Global biogeochemical cycles |
container_volume | 33 |
creator | Jones, Matthew W. Aragão, Luiz E. O. C. Dittmar, Thorsten Rezende, Carlos E. Almeida, Marcelo G. Johnson, Ben T. Marques, Jomar S. J. Niggemann, Jutta Rangel, Thiago P. Quine, Timothy A. |
description | Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments distributed across environmental gradients of hydrology, topography, climate, and soil properties. Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations, respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively) but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of refractory DOC export to the global oceans.
Key Points
Common hydrological factors explain variability in riverine dissolved organic carbon and dissolved black carbon concentrations, however;
Variation in soil properties, temperature, antecedent rainfall, and aerosol deposition may drive divergence in their relative abundance
At an unprecedented geographic scale, we find that aerosol BC contributes significantly to riverine fluxes of DBC |
doi_str_mv | 10.1029/2018GB006140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2269982637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269982637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-e2e91fe5a0806422d38d92de0f9032518c79a3b6326ffda0dd66db0ed073fd043</originalsourceid><addsrcrecordid>eNp90LFOwzAQgGELgUQpbDyAJVYC57PjxiMNJSBVQkIwR25si5TULnZa2rcnqAxMTLd8ujv9hFwyuGGA6haBFdUUQDIBR2TElBCZQhTHZARFITOJXJ6Ss5SWAEzkuRqRaua3bQx-ZX2vO1oG38fQJRo87d8tfWm3Nrbe0tluHWJPg6P3bUqh21pDp51uPmip4yL4c3LidJfsxe8ck7eH2Wv5mM2fq6fybp41Yngxs2gVczbXUIAUiIYXRqGx4BRwzFnRTJTmC8lROmc0GCOlWYA1MOHOgOBjcnXYu47hc2NTXy_DJvrhZI0olSpQ8smgrg-qiSGlaF29ju1Kx33NoP5JVf9NNXA88K-2s_t_bV1NSxxiIv8GFqdozQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269982637</pqid></control><display><type>article</type><title>Environmental Controls on the Riverine Export of Dissolved Black Carbon</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jones, Matthew W. ; Aragão, Luiz E. O. C. ; Dittmar, Thorsten ; Rezende, Carlos E. ; Almeida, Marcelo G. ; Johnson, Ben T. ; Marques, Jomar S. J. ; Niggemann, Jutta ; Rangel, Thiago P. ; Quine, Timothy A.</creator><creatorcontrib>Jones, Matthew W. ; Aragão, Luiz E. O. C. ; Dittmar, Thorsten ; Rezende, Carlos E. ; Almeida, Marcelo G. ; Johnson, Ben T. ; Marques, Jomar S. J. ; Niggemann, Jutta ; Rangel, Thiago P. ; Quine, Timothy A.</creatorcontrib><description>Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments distributed across environmental gradients of hydrology, topography, climate, and soil properties. Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations, respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively) but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of refractory DOC export to the global oceans.
Key Points
Common hydrological factors explain variability in riverine dissolved organic carbon and dissolved black carbon concentrations, however;
Variation in soil properties, temperature, antecedent rainfall, and aerosol deposition may drive divergence in their relative abundance
At an unprecedented geographic scale, we find that aerosol BC contributes significantly to riverine fluxes of DBC</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1029/2018GB006140</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerosols ; Atmospheric models ; BC Aerosol ; Biomass burning ; Black carbon ; Burning ; Carbon ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Carbon sequestration ; Catchment area ; Catchments ; Charcoal ; Climate models ; Dissolved Black Carbon ; Dissolved Organic Carbon ; Environmental control ; Environmental factors ; Environmental gradient ; Exports ; Fluxes ; Fossil fuels ; Fuel combustion ; Generalized linear models ; Gradients ; Hydrologic models ; Hydrology ; Oceans ; Organic carbon ; Pyrogenic Carbon ; Residence time ; River catchments ; Rivers ; Soil moisture ; Soil properties ; Soil temperature ; Soils ; Soot ; Statistical models ; Stocks ; Storage ; Temperature gradients ; Topography (geology) ; Tropical climate ; Tropical Rivers</subject><ispartof>Global biogeochemical cycles, 2019-07, Vol.33 (7), p.849-874</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-e2e91fe5a0806422d38d92de0f9032518c79a3b6326ffda0dd66db0ed073fd043</citedby><cites>FETCH-LOGICAL-c4102-e2e91fe5a0806422d38d92de0f9032518c79a3b6326ffda0dd66db0ed073fd043</cites><orcidid>0000-0002-3462-0107 ; 0000-0002-4134-6708 ; 0000-0003-1237-9233 ; 0000-0002-5143-5157 ; 0000-0003-3480-7980 ; 0000-0003-3334-9295 ; 0000-0002-6722-3693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GB006140$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GB006140$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Jones, Matthew W.</creatorcontrib><creatorcontrib>Aragão, Luiz E. O. C.</creatorcontrib><creatorcontrib>Dittmar, Thorsten</creatorcontrib><creatorcontrib>Rezende, Carlos E.</creatorcontrib><creatorcontrib>Almeida, Marcelo G.</creatorcontrib><creatorcontrib>Johnson, Ben T.</creatorcontrib><creatorcontrib>Marques, Jomar S. J.</creatorcontrib><creatorcontrib>Niggemann, Jutta</creatorcontrib><creatorcontrib>Rangel, Thiago P.</creatorcontrib><creatorcontrib>Quine, Timothy A.</creatorcontrib><title>Environmental Controls on the Riverine Export of Dissolved Black Carbon</title><title>Global biogeochemical cycles</title><description>Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments distributed across environmental gradients of hydrology, topography, climate, and soil properties. Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations, respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively) but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of refractory DOC export to the global oceans.
Key Points
Common hydrological factors explain variability in riverine dissolved organic carbon and dissolved black carbon concentrations, however;
Variation in soil properties, temperature, antecedent rainfall, and aerosol deposition may drive divergence in their relative abundance
At an unprecedented geographic scale, we find that aerosol BC contributes significantly to riverine fluxes of DBC</description><subject>Aerosols</subject><subject>Atmospheric models</subject><subject>BC Aerosol</subject><subject>Biomass burning</subject><subject>Black carbon</subject><subject>Burning</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon sequestration</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Charcoal</subject><subject>Climate models</subject><subject>Dissolved Black Carbon</subject><subject>Dissolved Organic Carbon</subject><subject>Environmental control</subject><subject>Environmental factors</subject><subject>Environmental gradient</subject><subject>Exports</subject><subject>Fluxes</subject><subject>Fossil fuels</subject><subject>Fuel combustion</subject><subject>Generalized linear models</subject><subject>Gradients</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Pyrogenic Carbon</subject><subject>Residence time</subject><subject>River catchments</subject><subject>Rivers</subject><subject>Soil moisture</subject><subject>Soil properties</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Soot</subject><subject>Statistical models</subject><subject>Stocks</subject><subject>Storage</subject><subject>Temperature gradients</subject><subject>Topography (geology)</subject><subject>Tropical climate</subject><subject>Tropical Rivers</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90LFOwzAQgGELgUQpbDyAJVYC57PjxiMNJSBVQkIwR25si5TULnZa2rcnqAxMTLd8ujv9hFwyuGGA6haBFdUUQDIBR2TElBCZQhTHZARFITOJXJ6Ss5SWAEzkuRqRaua3bQx-ZX2vO1oG38fQJRo87d8tfWm3Nrbe0tluHWJPg6P3bUqh21pDp51uPmip4yL4c3LidJfsxe8ck7eH2Wv5mM2fq6fybp41Yngxs2gVczbXUIAUiIYXRqGx4BRwzFnRTJTmC8lROmc0GCOlWYA1MOHOgOBjcnXYu47hc2NTXy_DJvrhZI0olSpQ8smgrg-qiSGlaF29ju1Kx33NoP5JVf9NNXA88K-2s_t_bV1NSxxiIv8GFqdozQ</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Jones, Matthew W.</creator><creator>Aragão, Luiz E. O. C.</creator><creator>Dittmar, Thorsten</creator><creator>Rezende, Carlos E.</creator><creator>Almeida, Marcelo G.</creator><creator>Johnson, Ben T.</creator><creator>Marques, Jomar S. J.</creator><creator>Niggemann, Jutta</creator><creator>Rangel, Thiago P.</creator><creator>Quine, Timothy A.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-3462-0107</orcidid><orcidid>https://orcid.org/0000-0002-4134-6708</orcidid><orcidid>https://orcid.org/0000-0003-1237-9233</orcidid><orcidid>https://orcid.org/0000-0002-5143-5157</orcidid><orcidid>https://orcid.org/0000-0003-3480-7980</orcidid><orcidid>https://orcid.org/0000-0003-3334-9295</orcidid><orcidid>https://orcid.org/0000-0002-6722-3693</orcidid></search><sort><creationdate>201907</creationdate><title>Environmental Controls on the Riverine Export of Dissolved Black Carbon</title><author>Jones, Matthew W. ; Aragão, Luiz E. O. C. ; Dittmar, Thorsten ; Rezende, Carlos E. ; Almeida, Marcelo G. ; Johnson, Ben T. ; Marques, Jomar S. J. ; Niggemann, Jutta ; Rangel, Thiago P. ; Quine, Timothy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-e2e91fe5a0806422d38d92de0f9032518c79a3b6326ffda0dd66db0ed073fd043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Atmospheric models</topic><topic>BC Aerosol</topic><topic>Biomass burning</topic><topic>Black carbon</topic><topic>Burning</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon sequestration</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Charcoal</topic><topic>Climate models</topic><topic>Dissolved Black Carbon</topic><topic>Dissolved Organic Carbon</topic><topic>Environmental control</topic><topic>Environmental factors</topic><topic>Environmental gradient</topic><topic>Exports</topic><topic>Fluxes</topic><topic>Fossil fuels</topic><topic>Fuel combustion</topic><topic>Generalized linear models</topic><topic>Gradients</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Pyrogenic Carbon</topic><topic>Residence time</topic><topic>River catchments</topic><topic>Rivers</topic><topic>Soil moisture</topic><topic>Soil properties</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Soot</topic><topic>Statistical models</topic><topic>Stocks</topic><topic>Storage</topic><topic>Temperature gradients</topic><topic>Topography (geology)</topic><topic>Tropical climate</topic><topic>Tropical Rivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Matthew W.</creatorcontrib><creatorcontrib>Aragão, Luiz E. O. C.</creatorcontrib><creatorcontrib>Dittmar, Thorsten</creatorcontrib><creatorcontrib>Rezende, Carlos E.</creatorcontrib><creatorcontrib>Almeida, Marcelo G.</creatorcontrib><creatorcontrib>Johnson, Ben T.</creatorcontrib><creatorcontrib>Marques, Jomar S. J.</creatorcontrib><creatorcontrib>Niggemann, Jutta</creatorcontrib><creatorcontrib>Rangel, Thiago P.</creatorcontrib><creatorcontrib>Quine, Timothy A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Matthew W.</au><au>Aragão, Luiz E. O. C.</au><au>Dittmar, Thorsten</au><au>Rezende, Carlos E.</au><au>Almeida, Marcelo G.</au><au>Johnson, Ben T.</au><au>Marques, Jomar S. J.</au><au>Niggemann, Jutta</au><au>Rangel, Thiago P.</au><au>Quine, Timothy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental Controls on the Riverine Export of Dissolved Black Carbon</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2019-07</date><risdate>2019</risdate><volume>33</volume><issue>7</issue><spage>849</spage><epage>874</epage><pages>849-874</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments distributed across environmental gradients of hydrology, topography, climate, and soil properties. Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations, respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively) but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of refractory DOC export to the global oceans.
Key Points
Common hydrological factors explain variability in riverine dissolved organic carbon and dissolved black carbon concentrations, however;
Variation in soil properties, temperature, antecedent rainfall, and aerosol deposition may drive divergence in their relative abundance
At an unprecedented geographic scale, we find that aerosol BC contributes significantly to riverine fluxes of DBC</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018GB006140</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3462-0107</orcidid><orcidid>https://orcid.org/0000-0002-4134-6708</orcidid><orcidid>https://orcid.org/0000-0003-1237-9233</orcidid><orcidid>https://orcid.org/0000-0002-5143-5157</orcidid><orcidid>https://orcid.org/0000-0003-3480-7980</orcidid><orcidid>https://orcid.org/0000-0003-3334-9295</orcidid><orcidid>https://orcid.org/0000-0002-6722-3693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-6236 |
ispartof | Global biogeochemical cycles, 2019-07, Vol.33 (7), p.849-874 |
issn | 0886-6236 1944-9224 |
language | eng |
recordid | cdi_proquest_journals_2269982637 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aerosols Atmospheric models BC Aerosol Biomass burning Black carbon Burning Carbon Carbon dioxide Carbon dioxide atmospheric concentrations Carbon sequestration Catchment area Catchments Charcoal Climate models Dissolved Black Carbon Dissolved Organic Carbon Environmental control Environmental factors Environmental gradient Exports Fluxes Fossil fuels Fuel combustion Generalized linear models Gradients Hydrologic models Hydrology Oceans Organic carbon Pyrogenic Carbon Residence time River catchments Rivers Soil moisture Soil properties Soil temperature Soils Soot Statistical models Stocks Storage Temperature gradients Topography (geology) Tropical climate Tropical Rivers |
title | Environmental Controls on the Riverine Export of Dissolved Black Carbon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20Controls%20on%20the%20Riverine%20Export%20of%20Dissolved%20Black%20Carbon&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Jones,%20Matthew%20W.&rft.date=2019-07&rft.volume=33&rft.issue=7&rft.spage=849&rft.epage=874&rft.pages=849-874&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/2018GB006140&rft_dat=%3Cproquest_cross%3E2269982637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269982637&rft_id=info:pmid/&rfr_iscdi=true |