Environmental Controls on the Riverine Export of Dissolved Black Carbon

Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2019-07, Vol.33 (7), p.849-874
Hauptverfasser: Jones, Matthew W., Aragão, Luiz E. O. C., Dittmar, Thorsten, Rezende, Carlos E., Almeida, Marcelo G., Johnson, Ben T., Marques, Jomar S. J., Niggemann, Jutta, Rangel, Thiago P., Quine, Timothy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 874
container_issue 7
container_start_page 849
container_title Global biogeochemical cycles
container_volume 33
creator Jones, Matthew W.
Aragão, Luiz E. O. C.
Dittmar, Thorsten
Rezende, Carlos E.
Almeida, Marcelo G.
Johnson, Ben T.
Marques, Jomar S. J.
Niggemann, Jutta
Rangel, Thiago P.
Quine, Timothy A.
description Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments distributed across environmental gradients of hydrology, topography, climate, and soil properties. Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations, respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively) but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of refractory DOC export to the global oceans. Key Points Common hydrological factors explain variability in riverine dissolved organic carbon and dissolved black carbon concentrations, however; Variation in soil properties, temperature, antecedent rainfall, and aerosol deposition may drive divergence in their relative abundance At an unprecedented geographic scale, we find that aerosol BC contributes significantly to riverine fluxes of DBC
doi_str_mv 10.1029/2018GB006140
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2269982637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269982637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-e2e91fe5a0806422d38d92de0f9032518c79a3b6326ffda0dd66db0ed073fd043</originalsourceid><addsrcrecordid>eNp90LFOwzAQgGELgUQpbDyAJVYC57PjxiMNJSBVQkIwR25si5TULnZa2rcnqAxMTLd8ujv9hFwyuGGA6haBFdUUQDIBR2TElBCZQhTHZARFITOJXJ6Ss5SWAEzkuRqRaua3bQx-ZX2vO1oG38fQJRo87d8tfWm3Nrbe0tluHWJPg6P3bUqh21pDp51uPmip4yL4c3LidJfsxe8ck7eH2Wv5mM2fq6fybp41Yngxs2gVczbXUIAUiIYXRqGx4BRwzFnRTJTmC8lROmc0GCOlWYA1MOHOgOBjcnXYu47hc2NTXy_DJvrhZI0olSpQ8smgrg-qiSGlaF29ju1Kx33NoP5JVf9NNXA88K-2s_t_bV1NSxxiIv8GFqdozQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269982637</pqid></control><display><type>article</type><title>Environmental Controls on the Riverine Export of Dissolved Black Carbon</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jones, Matthew W. ; Aragão, Luiz E. O. C. ; Dittmar, Thorsten ; Rezende, Carlos E. ; Almeida, Marcelo G. ; Johnson, Ben T. ; Marques, Jomar S. J. ; Niggemann, Jutta ; Rangel, Thiago P. ; Quine, Timothy A.</creator><creatorcontrib>Jones, Matthew W. ; Aragão, Luiz E. O. C. ; Dittmar, Thorsten ; Rezende, Carlos E. ; Almeida, Marcelo G. ; Johnson, Ben T. ; Marques, Jomar S. J. ; Niggemann, Jutta ; Rangel, Thiago P. ; Quine, Timothy A.</creatorcontrib><description>Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments distributed across environmental gradients of hydrology, topography, climate, and soil properties. Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations, respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively) but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of refractory DOC export to the global oceans. Key Points Common hydrological factors explain variability in riverine dissolved organic carbon and dissolved black carbon concentrations, however; Variation in soil properties, temperature, antecedent rainfall, and aerosol deposition may drive divergence in their relative abundance At an unprecedented geographic scale, we find that aerosol BC contributes significantly to riverine fluxes of DBC</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1029/2018GB006140</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerosols ; Atmospheric models ; BC Aerosol ; Biomass burning ; Black carbon ; Burning ; Carbon ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Carbon sequestration ; Catchment area ; Catchments ; Charcoal ; Climate models ; Dissolved Black Carbon ; Dissolved Organic Carbon ; Environmental control ; Environmental factors ; Environmental gradient ; Exports ; Fluxes ; Fossil fuels ; Fuel combustion ; Generalized linear models ; Gradients ; Hydrologic models ; Hydrology ; Oceans ; Organic carbon ; Pyrogenic Carbon ; Residence time ; River catchments ; Rivers ; Soil moisture ; Soil properties ; Soil temperature ; Soils ; Soot ; Statistical models ; Stocks ; Storage ; Temperature gradients ; Topography (geology) ; Tropical climate ; Tropical Rivers</subject><ispartof>Global biogeochemical cycles, 2019-07, Vol.33 (7), p.849-874</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-e2e91fe5a0806422d38d92de0f9032518c79a3b6326ffda0dd66db0ed073fd043</citedby><cites>FETCH-LOGICAL-c4102-e2e91fe5a0806422d38d92de0f9032518c79a3b6326ffda0dd66db0ed073fd043</cites><orcidid>0000-0002-3462-0107 ; 0000-0002-4134-6708 ; 0000-0003-1237-9233 ; 0000-0002-5143-5157 ; 0000-0003-3480-7980 ; 0000-0003-3334-9295 ; 0000-0002-6722-3693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GB006140$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GB006140$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Jones, Matthew W.</creatorcontrib><creatorcontrib>Aragão, Luiz E. O. C.</creatorcontrib><creatorcontrib>Dittmar, Thorsten</creatorcontrib><creatorcontrib>Rezende, Carlos E.</creatorcontrib><creatorcontrib>Almeida, Marcelo G.</creatorcontrib><creatorcontrib>Johnson, Ben T.</creatorcontrib><creatorcontrib>Marques, Jomar S. J.</creatorcontrib><creatorcontrib>Niggemann, Jutta</creatorcontrib><creatorcontrib>Rangel, Thiago P.</creatorcontrib><creatorcontrib>Quine, Timothy A.</creatorcontrib><title>Environmental Controls on the Riverine Export of Dissolved Black Carbon</title><title>Global biogeochemical cycles</title><description>Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments distributed across environmental gradients of hydrology, topography, climate, and soil properties. Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations, respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively) but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of refractory DOC export to the global oceans. Key Points Common hydrological factors explain variability in riverine dissolved organic carbon and dissolved black carbon concentrations, however; Variation in soil properties, temperature, antecedent rainfall, and aerosol deposition may drive divergence in their relative abundance At an unprecedented geographic scale, we find that aerosol BC contributes significantly to riverine fluxes of DBC</description><subject>Aerosols</subject><subject>Atmospheric models</subject><subject>BC Aerosol</subject><subject>Biomass burning</subject><subject>Black carbon</subject><subject>Burning</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Carbon sequestration</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Charcoal</subject><subject>Climate models</subject><subject>Dissolved Black Carbon</subject><subject>Dissolved Organic Carbon</subject><subject>Environmental control</subject><subject>Environmental factors</subject><subject>Environmental gradient</subject><subject>Exports</subject><subject>Fluxes</subject><subject>Fossil fuels</subject><subject>Fuel combustion</subject><subject>Generalized linear models</subject><subject>Gradients</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Pyrogenic Carbon</subject><subject>Residence time</subject><subject>River catchments</subject><subject>Rivers</subject><subject>Soil moisture</subject><subject>Soil properties</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Soot</subject><subject>Statistical models</subject><subject>Stocks</subject><subject>Storage</subject><subject>Temperature gradients</subject><subject>Topography (geology)</subject><subject>Tropical climate</subject><subject>Tropical Rivers</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90LFOwzAQgGELgUQpbDyAJVYC57PjxiMNJSBVQkIwR25si5TULnZa2rcnqAxMTLd8ujv9hFwyuGGA6haBFdUUQDIBR2TElBCZQhTHZARFITOJXJ6Ss5SWAEzkuRqRaua3bQx-ZX2vO1oG38fQJRo87d8tfWm3Nrbe0tluHWJPg6P3bUqh21pDp51uPmip4yL4c3LidJfsxe8ck7eH2Wv5mM2fq6fybp41Yngxs2gVczbXUIAUiIYXRqGx4BRwzFnRTJTmC8lROmc0GCOlWYA1MOHOgOBjcnXYu47hc2NTXy_DJvrhZI0olSpQ8smgrg-qiSGlaF29ju1Kx33NoP5JVf9NNXA88K-2s_t_bV1NSxxiIv8GFqdozQ</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Jones, Matthew W.</creator><creator>Aragão, Luiz E. O. C.</creator><creator>Dittmar, Thorsten</creator><creator>Rezende, Carlos E.</creator><creator>Almeida, Marcelo G.</creator><creator>Johnson, Ben T.</creator><creator>Marques, Jomar S. J.</creator><creator>Niggemann, Jutta</creator><creator>Rangel, Thiago P.</creator><creator>Quine, Timothy A.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-3462-0107</orcidid><orcidid>https://orcid.org/0000-0002-4134-6708</orcidid><orcidid>https://orcid.org/0000-0003-1237-9233</orcidid><orcidid>https://orcid.org/0000-0002-5143-5157</orcidid><orcidid>https://orcid.org/0000-0003-3480-7980</orcidid><orcidid>https://orcid.org/0000-0003-3334-9295</orcidid><orcidid>https://orcid.org/0000-0002-6722-3693</orcidid></search><sort><creationdate>201907</creationdate><title>Environmental Controls on the Riverine Export of Dissolved Black Carbon</title><author>Jones, Matthew W. ; Aragão, Luiz E. O. C. ; Dittmar, Thorsten ; Rezende, Carlos E. ; Almeida, Marcelo G. ; Johnson, Ben T. ; Marques, Jomar S. J. ; Niggemann, Jutta ; Rangel, Thiago P. ; Quine, Timothy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-e2e91fe5a0806422d38d92de0f9032518c79a3b6326ffda0dd66db0ed073fd043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Atmospheric models</topic><topic>BC Aerosol</topic><topic>Biomass burning</topic><topic>Black carbon</topic><topic>Burning</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Carbon sequestration</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Charcoal</topic><topic>Climate models</topic><topic>Dissolved Black Carbon</topic><topic>Dissolved Organic Carbon</topic><topic>Environmental control</topic><topic>Environmental factors</topic><topic>Environmental gradient</topic><topic>Exports</topic><topic>Fluxes</topic><topic>Fossil fuels</topic><topic>Fuel combustion</topic><topic>Generalized linear models</topic><topic>Gradients</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Pyrogenic Carbon</topic><topic>Residence time</topic><topic>River catchments</topic><topic>Rivers</topic><topic>Soil moisture</topic><topic>Soil properties</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Soot</topic><topic>Statistical models</topic><topic>Stocks</topic><topic>Storage</topic><topic>Temperature gradients</topic><topic>Topography (geology)</topic><topic>Tropical climate</topic><topic>Tropical Rivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Matthew W.</creatorcontrib><creatorcontrib>Aragão, Luiz E. O. C.</creatorcontrib><creatorcontrib>Dittmar, Thorsten</creatorcontrib><creatorcontrib>Rezende, Carlos E.</creatorcontrib><creatorcontrib>Almeida, Marcelo G.</creatorcontrib><creatorcontrib>Johnson, Ben T.</creatorcontrib><creatorcontrib>Marques, Jomar S. J.</creatorcontrib><creatorcontrib>Niggemann, Jutta</creatorcontrib><creatorcontrib>Rangel, Thiago P.</creatorcontrib><creatorcontrib>Quine, Timothy A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Matthew W.</au><au>Aragão, Luiz E. O. C.</au><au>Dittmar, Thorsten</au><au>Rezende, Carlos E.</au><au>Almeida, Marcelo G.</au><au>Johnson, Ben T.</au><au>Marques, Jomar S. J.</au><au>Niggemann, Jutta</au><au>Rangel, Thiago P.</au><au>Quine, Timothy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental Controls on the Riverine Export of Dissolved Black Carbon</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2019-07</date><risdate>2019</risdate><volume>33</volume><issue>7</issue><spage>849</spage><epage>874</epage><pages>849-874</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments distributed across environmental gradients of hydrology, topography, climate, and soil properties. Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations, respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively) but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of refractory DOC export to the global oceans. Key Points Common hydrological factors explain variability in riverine dissolved organic carbon and dissolved black carbon concentrations, however; Variation in soil properties, temperature, antecedent rainfall, and aerosol deposition may drive divergence in their relative abundance At an unprecedented geographic scale, we find that aerosol BC contributes significantly to riverine fluxes of DBC</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018GB006140</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3462-0107</orcidid><orcidid>https://orcid.org/0000-0002-4134-6708</orcidid><orcidid>https://orcid.org/0000-0003-1237-9233</orcidid><orcidid>https://orcid.org/0000-0002-5143-5157</orcidid><orcidid>https://orcid.org/0000-0003-3480-7980</orcidid><orcidid>https://orcid.org/0000-0003-3334-9295</orcidid><orcidid>https://orcid.org/0000-0002-6722-3693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2019-07, Vol.33 (7), p.849-874
issn 0886-6236
1944-9224
language eng
recordid cdi_proquest_journals_2269982637
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aerosols
Atmospheric models
BC Aerosol
Biomass burning
Black carbon
Burning
Carbon
Carbon dioxide
Carbon dioxide atmospheric concentrations
Carbon sequestration
Catchment area
Catchments
Charcoal
Climate models
Dissolved Black Carbon
Dissolved Organic Carbon
Environmental control
Environmental factors
Environmental gradient
Exports
Fluxes
Fossil fuels
Fuel combustion
Generalized linear models
Gradients
Hydrologic models
Hydrology
Oceans
Organic carbon
Pyrogenic Carbon
Residence time
River catchments
Rivers
Soil moisture
Soil properties
Soil temperature
Soils
Soot
Statistical models
Stocks
Storage
Temperature gradients
Topography (geology)
Tropical climate
Tropical Rivers
title Environmental Controls on the Riverine Export of Dissolved Black Carbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20Controls%20on%20the%20Riverine%20Export%20of%20Dissolved%20Black%20Carbon&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Jones,%20Matthew%20W.&rft.date=2019-07&rft.volume=33&rft.issue=7&rft.spage=849&rft.epage=874&rft.pages=849-874&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/2018GB006140&rft_dat=%3Cproquest_cross%3E2269982637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269982637&rft_id=info:pmid/&rfr_iscdi=true