Microrobot-in-glass for dynamic motion analysis and wider in vitro applications
Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work...
Gespeichert in:
Veröffentlicht in: | Micro & nano letters 2019-07, Vol.14 (8), p.882-886 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 886 |
---|---|
container_issue | 8 |
container_start_page | 882 |
container_title | Micro & nano letters |
container_volume | 14 |
creator | Salmon, Hugo Couraud, Laurent Roblin, Christophe Hwang, Gilgueng |
description | Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments. |
doi_str_mv | 10.1049/mnl.2019.0006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2269958031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269958031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4496-728dfaf666de62a37638d511512292cc185969be9f8125815f3cb5db09f6259f3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRiMEEqUwskdCDAwpZyd24rFUlCKl7QKz5cQxuEriYLdU-fckpEIdgMkn6913d8_zrhFMEETsvqrLCQbEJgBAT7wRigkEEEXh6VF97l04twGIYhyzkbde6twaazKzDXQdvJXCOV8Z68u2FpXO_cpstal9UYuyddp1hfT3WhbW17X_qbfW-KJpSp2LnnOX3pkSpSuuDu_Ye50_vswWQbp-ep5N0yCPIkaDGCdSCUUplQXFIoxpmEiCEEEYM5znKCGMsqxgKkGYJIioMM-IzIApiglT4di7G3LfRckbqythW26E5otpyvs_wJDEGOJP1LE3A9tY87Er3JZvzM52BzmOMWWMJBD2VDBQnQ_nbKF-YhHw3i_v_PLeL-_9djwd-L0ui_Z_mC9XU_wwB0S_Gw-r6-Jok7-G3P7CLlfpUXYjVfgFcyqWFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269958031</pqid></control><display><type>article</type><title>Microrobot-in-glass for dynamic motion analysis and wider in vitro applications</title><source>Wiley-Blackwell Open Access Titles</source><creator>Salmon, Hugo ; Couraud, Laurent ; Roblin, Christophe ; Hwang, Gilgueng</creator><creatorcontrib>Salmon, Hugo ; Couraud, Laurent ; Roblin, Christophe ; Hwang, Gilgueng</creatorcontrib><description>Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments.</description><identifier>ISSN: 1750-0443</identifier><identifier>EISSN: 1750-0443</identifier><identifier>DOI: 10.1049/mnl.2019.0006</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Analytical chemistry ; Biochemistry, Molecular Biology ; Biophysics ; Cancer ; Chemical Sciences ; conventional polymer chips ; dynamic motion analysis ; Engineering Sciences ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Frequency analysis ; glass ; glass substrate ; Glass substrates ; high precision platform ; high‐frequency hydrodynamics analysis ; Hydrodynamics ; Industrial applications ; inert surface ; Instrumentation and Detectors ; Life Sciences ; Mapping ; mapping surfaces ; Material chemistry ; Materials ; Medical Physics ; Medicinal Chemistry ; medicine research ; Micro and nanotechnologies ; Microelectronics ; microfabrication ; Microfluidics ; microrobot design ; Microrobots ; microrobot‐in‐glass ; Molecular biology ; motion control ; organosilicon polymers ; originally integrated microrobot ; permanently sealed glass microfluidic chip ; physical environments ; Physics ; polymers ; smooth surface ; stable surface ; surface forces ; vitro applications</subject><ispartof>Micro & nano letters, 2019-07, Vol.14 (8), p.882-886</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2019 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering & Technology Jul 24, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4496-728dfaf666de62a37638d511512292cc185969be9f8125815f3cb5db09f6259f3</citedby><cites>FETCH-LOGICAL-c4496-728dfaf666de62a37638d511512292cc185969be9f8125815f3cb5db09f6259f3</cites><orcidid>0000-0002-5486-1370 ; 0000-0003-3462-2118 ; 0000-0003-3232-3085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fmnl.2019.0006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fmnl.2019.0006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,11567,27929,27930,45579,45580,46057,46481</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2019.0006$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://hal.science/hal-02087207$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Salmon, Hugo</creatorcontrib><creatorcontrib>Couraud, Laurent</creatorcontrib><creatorcontrib>Roblin, Christophe</creatorcontrib><creatorcontrib>Hwang, Gilgueng</creatorcontrib><title>Microrobot-in-glass for dynamic motion analysis and wider in vitro applications</title><title>Micro & nano letters</title><description>Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments.</description><subject>Analytical chemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Cancer</subject><subject>Chemical Sciences</subject><subject>conventional polymer chips</subject><subject>dynamic motion analysis</subject><subject>Engineering Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Frequency analysis</subject><subject>glass</subject><subject>glass substrate</subject><subject>Glass substrates</subject><subject>high precision platform</subject><subject>high‐frequency hydrodynamics analysis</subject><subject>Hydrodynamics</subject><subject>Industrial applications</subject><subject>inert surface</subject><subject>Instrumentation and Detectors</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>mapping surfaces</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Medical Physics</subject><subject>Medicinal Chemistry</subject><subject>medicine research</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>microfabrication</subject><subject>Microfluidics</subject><subject>microrobot design</subject><subject>Microrobots</subject><subject>microrobot‐in‐glass</subject><subject>Molecular biology</subject><subject>motion control</subject><subject>organosilicon polymers</subject><subject>originally integrated microrobot</subject><subject>permanently sealed glass microfluidic chip</subject><subject>physical environments</subject><subject>Physics</subject><subject>polymers</subject><subject>smooth surface</subject><subject>stable surface</subject><subject>surface forces</subject><subject>vitro applications</subject><issn>1750-0443</issn><issn>1750-0443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRiMEEqUwskdCDAwpZyd24rFUlCKl7QKz5cQxuEriYLdU-fckpEIdgMkn6913d8_zrhFMEETsvqrLCQbEJgBAT7wRigkEEEXh6VF97l04twGIYhyzkbde6twaazKzDXQdvJXCOV8Z68u2FpXO_cpstal9UYuyddp1hfT3WhbW17X_qbfW-KJpSp2LnnOX3pkSpSuuDu_Ye50_vswWQbp-ep5N0yCPIkaDGCdSCUUplQXFIoxpmEiCEEEYM5znKCGMsqxgKkGYJIioMM-IzIApiglT4di7G3LfRckbqythW26E5otpyvs_wJDEGOJP1LE3A9tY87Er3JZvzM52BzmOMWWMJBD2VDBQnQ_nbKF-YhHw3i_v_PLeL-_9djwd-L0ui_Z_mC9XU_wwB0S_Gw-r6-Jok7-G3P7CLlfpUXYjVfgFcyqWFg</recordid><startdate>20190724</startdate><enddate>20190724</enddate><creator>Salmon, Hugo</creator><creator>Couraud, Laurent</creator><creator>Roblin, Christophe</creator><creator>Hwang, Gilgueng</creator><general>The Institution of Engineering and Technology</general><general>John Wiley & Sons, Inc</general><general>Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5486-1370</orcidid><orcidid>https://orcid.org/0000-0003-3462-2118</orcidid><orcidid>https://orcid.org/0000-0003-3232-3085</orcidid></search><sort><creationdate>20190724</creationdate><title>Microrobot-in-glass for dynamic motion analysis and wider in vitro applications</title><author>Salmon, Hugo ; Couraud, Laurent ; Roblin, Christophe ; Hwang, Gilgueng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4496-728dfaf666de62a37638d511512292cc185969be9f8125815f3cb5db09f6259f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical chemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Cancer</topic><topic>Chemical Sciences</topic><topic>conventional polymer chips</topic><topic>dynamic motion analysis</topic><topic>Engineering Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Frequency analysis</topic><topic>glass</topic><topic>glass substrate</topic><topic>Glass substrates</topic><topic>high precision platform</topic><topic>high‐frequency hydrodynamics analysis</topic><topic>Hydrodynamics</topic><topic>Industrial applications</topic><topic>inert surface</topic><topic>Instrumentation and Detectors</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>mapping surfaces</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Medical Physics</topic><topic>Medicinal Chemistry</topic><topic>medicine research</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>microfabrication</topic><topic>Microfluidics</topic><topic>microrobot design</topic><topic>Microrobots</topic><topic>microrobot‐in‐glass</topic><topic>Molecular biology</topic><topic>motion control</topic><topic>organosilicon polymers</topic><topic>originally integrated microrobot</topic><topic>permanently sealed glass microfluidic chip</topic><topic>physical environments</topic><topic>Physics</topic><topic>polymers</topic><topic>smooth surface</topic><topic>stable surface</topic><topic>surface forces</topic><topic>vitro applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salmon, Hugo</creatorcontrib><creatorcontrib>Couraud, Laurent</creatorcontrib><creatorcontrib>Roblin, Christophe</creatorcontrib><creatorcontrib>Hwang, Gilgueng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Micro & nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salmon, Hugo</au><au>Couraud, Laurent</au><au>Roblin, Christophe</au><au>Hwang, Gilgueng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microrobot-in-glass for dynamic motion analysis and wider in vitro applications</atitle><jtitle>Micro & nano letters</jtitle><date>2019-07-24</date><risdate>2019</risdate><volume>14</volume><issue>8</issue><spage>882</spage><epage>886</epage><pages>882-886</pages><issn>1750-0443</issn><eissn>1750-0443</eissn><abstract>Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/mnl.2019.0006</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5486-1370</orcidid><orcidid>https://orcid.org/0000-0003-3462-2118</orcidid><orcidid>https://orcid.org/0000-0003-3232-3085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1750-0443 |
ispartof | Micro & nano letters, 2019-07, Vol.14 (8), p.882-886 |
issn | 1750-0443 1750-0443 |
language | eng |
recordid | cdi_proquest_journals_2269958031 |
source | Wiley-Blackwell Open Access Titles |
subjects | Analytical chemistry Biochemistry, Molecular Biology Biophysics Cancer Chemical Sciences conventional polymer chips dynamic motion analysis Engineering Sciences Fluid dynamics Fluid flow Fluid mechanics Frequency analysis glass glass substrate Glass substrates high precision platform high‐frequency hydrodynamics analysis Hydrodynamics Industrial applications inert surface Instrumentation and Detectors Life Sciences Mapping mapping surfaces Material chemistry Materials Medical Physics Medicinal Chemistry medicine research Micro and nanotechnologies Microelectronics microfabrication Microfluidics microrobot design Microrobots microrobot‐in‐glass Molecular biology motion control organosilicon polymers originally integrated microrobot permanently sealed glass microfluidic chip physical environments Physics polymers smooth surface stable surface surface forces vitro applications |
title | Microrobot-in-glass for dynamic motion analysis and wider in vitro applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T12%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microrobot-in-glass%20for%20dynamic%20motion%20analysis%20and%20wider%20in%20vitro%20applications&rft.jtitle=Micro%20&%20nano%20letters&rft.au=Salmon,%20Hugo&rft.date=2019-07-24&rft.volume=14&rft.issue=8&rft.spage=882&rft.epage=886&rft.pages=882-886&rft.issn=1750-0443&rft.eissn=1750-0443&rft_id=info:doi/10.1049/mnl.2019.0006&rft_dat=%3Cproquest_24P%3E2269958031%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269958031&rft_id=info:pmid/&rfr_iscdi=true |