Microrobot-in-glass for dynamic motion analysis and wider in vitro applications

Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micro & nano letters 2019-07, Vol.14 (8), p.882-886
Hauptverfasser: Salmon, Hugo, Couraud, Laurent, Roblin, Christophe, Hwang, Gilgueng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 8
container_start_page 882
container_title Micro & nano letters
container_volume 14
creator Salmon, Hugo
Couraud, Laurent
Roblin, Christophe
Hwang, Gilgueng
description Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments.
doi_str_mv 10.1049/mnl.2019.0006
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2269958031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269958031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4496-728dfaf666de62a37638d511512292cc185969be9f8125815f3cb5db09f6259f3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRiMEEqUwskdCDAwpZyd24rFUlCKl7QKz5cQxuEriYLdU-fckpEIdgMkn6913d8_zrhFMEETsvqrLCQbEJgBAT7wRigkEEEXh6VF97l04twGIYhyzkbde6twaazKzDXQdvJXCOV8Z68u2FpXO_cpstal9UYuyddp1hfT3WhbW17X_qbfW-KJpSp2LnnOX3pkSpSuuDu_Ye50_vswWQbp-ep5N0yCPIkaDGCdSCUUplQXFIoxpmEiCEEEYM5znKCGMsqxgKkGYJIioMM-IzIApiglT4di7G3LfRckbqythW26E5otpyvs_wJDEGOJP1LE3A9tY87Er3JZvzM52BzmOMWWMJBD2VDBQnQ_nbKF-YhHw3i_v_PLeL-_9djwd-L0ui_Z_mC9XU_wwB0S_Gw-r6-Jok7-G3P7CLlfpUXYjVfgFcyqWFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269958031</pqid></control><display><type>article</type><title>Microrobot-in-glass for dynamic motion analysis and wider in vitro applications</title><source>Wiley-Blackwell Open Access Titles</source><creator>Salmon, Hugo ; Couraud, Laurent ; Roblin, Christophe ; Hwang, Gilgueng</creator><creatorcontrib>Salmon, Hugo ; Couraud, Laurent ; Roblin, Christophe ; Hwang, Gilgueng</creatorcontrib><description>Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments.</description><identifier>ISSN: 1750-0443</identifier><identifier>EISSN: 1750-0443</identifier><identifier>DOI: 10.1049/mnl.2019.0006</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Analytical chemistry ; Biochemistry, Molecular Biology ; Biophysics ; Cancer ; Chemical Sciences ; conventional polymer chips ; dynamic motion analysis ; Engineering Sciences ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Frequency analysis ; glass ; glass substrate ; Glass substrates ; high precision platform ; high‐frequency hydrodynamics analysis ; Hydrodynamics ; Industrial applications ; inert surface ; Instrumentation and Detectors ; Life Sciences ; Mapping ; mapping surfaces ; Material chemistry ; Materials ; Medical Physics ; Medicinal Chemistry ; medicine research ; Micro and nanotechnologies ; Microelectronics ; microfabrication ; Microfluidics ; microrobot design ; Microrobots ; microrobot‐in‐glass ; Molecular biology ; motion control ; organosilicon polymers ; originally integrated microrobot ; permanently sealed glass microfluidic chip ; physical environments ; Physics ; polymers ; smooth surface ; stable surface ; surface forces ; vitro applications</subject><ispartof>Micro &amp; nano letters, 2019-07, Vol.14 (8), p.882-886</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2019 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering &amp; Technology Jul 24, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4496-728dfaf666de62a37638d511512292cc185969be9f8125815f3cb5db09f6259f3</citedby><cites>FETCH-LOGICAL-c4496-728dfaf666de62a37638d511512292cc185969be9f8125815f3cb5db09f6259f3</cites><orcidid>0000-0002-5486-1370 ; 0000-0003-3462-2118 ; 0000-0003-3232-3085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fmnl.2019.0006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fmnl.2019.0006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,11567,27929,27930,45579,45580,46057,46481</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2019.0006$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://hal.science/hal-02087207$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Salmon, Hugo</creatorcontrib><creatorcontrib>Couraud, Laurent</creatorcontrib><creatorcontrib>Roblin, Christophe</creatorcontrib><creatorcontrib>Hwang, Gilgueng</creatorcontrib><title>Microrobot-in-glass for dynamic motion analysis and wider in vitro applications</title><title>Micro &amp; nano letters</title><description>Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments.</description><subject>Analytical chemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Cancer</subject><subject>Chemical Sciences</subject><subject>conventional polymer chips</subject><subject>dynamic motion analysis</subject><subject>Engineering Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Frequency analysis</subject><subject>glass</subject><subject>glass substrate</subject><subject>Glass substrates</subject><subject>high precision platform</subject><subject>high‐frequency hydrodynamics analysis</subject><subject>Hydrodynamics</subject><subject>Industrial applications</subject><subject>inert surface</subject><subject>Instrumentation and Detectors</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>mapping surfaces</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Medical Physics</subject><subject>Medicinal Chemistry</subject><subject>medicine research</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>microfabrication</subject><subject>Microfluidics</subject><subject>microrobot design</subject><subject>Microrobots</subject><subject>microrobot‐in‐glass</subject><subject>Molecular biology</subject><subject>motion control</subject><subject>organosilicon polymers</subject><subject>originally integrated microrobot</subject><subject>permanently sealed glass microfluidic chip</subject><subject>physical environments</subject><subject>Physics</subject><subject>polymers</subject><subject>smooth surface</subject><subject>stable surface</subject><subject>surface forces</subject><subject>vitro applications</subject><issn>1750-0443</issn><issn>1750-0443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRiMEEqUwskdCDAwpZyd24rFUlCKl7QKz5cQxuEriYLdU-fckpEIdgMkn6913d8_zrhFMEETsvqrLCQbEJgBAT7wRigkEEEXh6VF97l04twGIYhyzkbde6twaazKzDXQdvJXCOV8Z68u2FpXO_cpstal9UYuyddp1hfT3WhbW17X_qbfW-KJpSp2LnnOX3pkSpSuuDu_Ye50_vswWQbp-ep5N0yCPIkaDGCdSCUUplQXFIoxpmEiCEEEYM5znKCGMsqxgKkGYJIioMM-IzIApiglT4di7G3LfRckbqythW26E5otpyvs_wJDEGOJP1LE3A9tY87Er3JZvzM52BzmOMWWMJBD2VDBQnQ_nbKF-YhHw3i_v_PLeL-_9djwd-L0ui_Z_mC9XU_wwB0S_Gw-r6-Jok7-G3P7CLlfpUXYjVfgFcyqWFg</recordid><startdate>20190724</startdate><enddate>20190724</enddate><creator>Salmon, Hugo</creator><creator>Couraud, Laurent</creator><creator>Roblin, Christophe</creator><creator>Hwang, Gilgueng</creator><general>The Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><general>Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5486-1370</orcidid><orcidid>https://orcid.org/0000-0003-3462-2118</orcidid><orcidid>https://orcid.org/0000-0003-3232-3085</orcidid></search><sort><creationdate>20190724</creationdate><title>Microrobot-in-glass for dynamic motion analysis and wider in vitro applications</title><author>Salmon, Hugo ; Couraud, Laurent ; Roblin, Christophe ; Hwang, Gilgueng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4496-728dfaf666de62a37638d511512292cc185969be9f8125815f3cb5db09f6259f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical chemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Cancer</topic><topic>Chemical Sciences</topic><topic>conventional polymer chips</topic><topic>dynamic motion analysis</topic><topic>Engineering Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Frequency analysis</topic><topic>glass</topic><topic>glass substrate</topic><topic>Glass substrates</topic><topic>high precision platform</topic><topic>high‐frequency hydrodynamics analysis</topic><topic>Hydrodynamics</topic><topic>Industrial applications</topic><topic>inert surface</topic><topic>Instrumentation and Detectors</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>mapping surfaces</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Medical Physics</topic><topic>Medicinal Chemistry</topic><topic>medicine research</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>microfabrication</topic><topic>Microfluidics</topic><topic>microrobot design</topic><topic>Microrobots</topic><topic>microrobot‐in‐glass</topic><topic>Molecular biology</topic><topic>motion control</topic><topic>organosilicon polymers</topic><topic>originally integrated microrobot</topic><topic>permanently sealed glass microfluidic chip</topic><topic>physical environments</topic><topic>Physics</topic><topic>polymers</topic><topic>smooth surface</topic><topic>stable surface</topic><topic>surface forces</topic><topic>vitro applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salmon, Hugo</creatorcontrib><creatorcontrib>Couraud, Laurent</creatorcontrib><creatorcontrib>Roblin, Christophe</creatorcontrib><creatorcontrib>Hwang, Gilgueng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Micro &amp; nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salmon, Hugo</au><au>Couraud, Laurent</au><au>Roblin, Christophe</au><au>Hwang, Gilgueng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microrobot-in-glass for dynamic motion analysis and wider in vitro applications</atitle><jtitle>Micro &amp; nano letters</jtitle><date>2019-07-24</date><risdate>2019</risdate><volume>14</volume><issue>8</issue><spage>882</spage><epage>886</epage><pages>882-886</pages><issn>1750-0443</issn><eissn>1750-0443</eissn><abstract>Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/mnl.2019.0006</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5486-1370</orcidid><orcidid>https://orcid.org/0000-0003-3462-2118</orcidid><orcidid>https://orcid.org/0000-0003-3232-3085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1750-0443
ispartof Micro & nano letters, 2019-07, Vol.14 (8), p.882-886
issn 1750-0443
1750-0443
language eng
recordid cdi_proquest_journals_2269958031
source Wiley-Blackwell Open Access Titles
subjects Analytical chemistry
Biochemistry, Molecular Biology
Biophysics
Cancer
Chemical Sciences
conventional polymer chips
dynamic motion analysis
Engineering Sciences
Fluid dynamics
Fluid flow
Fluid mechanics
Frequency analysis
glass
glass substrate
Glass substrates
high precision platform
high‐frequency hydrodynamics analysis
Hydrodynamics
Industrial applications
inert surface
Instrumentation and Detectors
Life Sciences
Mapping
mapping surfaces
Material chemistry
Materials
Medical Physics
Medicinal Chemistry
medicine research
Micro and nanotechnologies
Microelectronics
microfabrication
Microfluidics
microrobot design
Microrobots
microrobot‐in‐glass
Molecular biology
motion control
organosilicon polymers
originally integrated microrobot
permanently sealed glass microfluidic chip
physical environments
Physics
polymers
smooth surface
stable surface
surface forces
vitro applications
title Microrobot-in-glass for dynamic motion analysis and wider in vitro applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T12%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microrobot-in-glass%20for%20dynamic%20motion%20analysis%20and%20wider%20in%20vitro%20applications&rft.jtitle=Micro%20&%20nano%20letters&rft.au=Salmon,%20Hugo&rft.date=2019-07-24&rft.volume=14&rft.issue=8&rft.spage=882&rft.epage=886&rft.pages=882-886&rft.issn=1750-0443&rft.eissn=1750-0443&rft_id=info:doi/10.1049/mnl.2019.0006&rft_dat=%3Cproquest_24P%3E2269958031%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269958031&rft_id=info:pmid/&rfr_iscdi=true