r-FREDHOLM THEORY IN BANACH ALGEBRAS

Harte (1982, Math. Z. 179, 431–436) initiated the study of Fredholm theory relative to a unital homomorphism T: A → B between unital Banach algebras A and B based on the following notions: an element a ∈ A is called Fredholm if 0 is not in the spectrum of Ta, while a is Weyl (Browder) if there exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2019-09, Vol.61 (3), p.615-627
Hauptverfasser: BENJAMIN, RONALDA, LAUSTSEN, NIELS JAKOB, MOUTON, SONJA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Harte (1982, Math. Z. 179, 431–436) initiated the study of Fredholm theory relative to a unital homomorphism T: A → B between unital Banach algebras A and B based on the following notions: an element a ∈ A is called Fredholm if 0 is not in the spectrum of Ta, while a is Weyl (Browder) if there exist (commuting) elements b and c in A with a = b + c such that 0 is not in the spectrum of b and c is in the null space of T. We introduce and investigate the concepts of r-Fredholm, r-Weyl and r-Browder elements, where 0 in these definitions is replaced by the spectral radii of a and b, respectively.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089518000393