On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface
Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurat...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2019-08, Vol.18 (8), p.1611-1615 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1615 |
---|---|
container_issue | 8 |
container_start_page | 1611 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 18 |
creator | Salau, Babajide A. Tokgoz, Cagatay Yilmazer, Nuri |
description | Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurate evaluation of these functions. Asymptotic solutions for radiation from sources close to an electrically large conducting convex surface include the derivatives of these Fock functions as well. However, the existing formulations for the functions do not yield accurate and continuous results for their derivatives. In this letter, the existing formulations are modified to adjust the boundaries between separate intervals for efficient and accurate evaluation of the Fock functions and their derivatives, and to assess continuity across the boundaries for different numbers of terms. The modified formulations are used in the extended uniform geometrical theory of diffraction solution to predict the radiation pattern of a quarter wavelength monopole antenna, which is validated in comparison with the results of the multilevel fast multipole method (MLFMM). |
doi_str_mv | 10.1109/LAWP.2019.2925145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2269669716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8746123</ieee_id><sourcerecordid>2269669716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3f712a3118d480c69f6a893054493e10627c920128b97813c11c7fad191c61153</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPgS8LkzlzRJ8ziKU6EwcYpPEmKWSEfXzKQV99_bsuHT3cH33d33Q-gayAyAqLtq_v48owTUjCrKIecnaAI8LzIuuTwdeyYyoJSfo4uUNoSAFJxN0Meyxauds7Vp8KJvbVeHNmEfIn4x69qMI17EsMWr0EfrEi6bkBzuAjYtvm-c7WJtTdPscWXil8NlaH_cL1710RvrLtGZN01yV8c6RW-L-9fyMauWD0_lvMosVazLmJdADQMo1nlBrFBemEIxwvNcMQdEUGnVEI4Wn0oWwCyAld6sQYEVMESbotvD3l0M371Lnd4M77bDSU2pUEIoCWJQwUFlY0gpOq93sd6auNdA9EhRjxT1SFEfKQ6em4Onds796wuZC6CM_QHU7mvf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269669716</pqid></control><display><type>article</type><title>On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface</title><source>IEEE Electronic Library (IEL)</source><creator>Salau, Babajide A. ; Tokgoz, Cagatay ; Yilmazer, Nuri</creator><creatorcontrib>Salau, Babajide A. ; Tokgoz, Cagatay ; Yilmazer, Nuri</creatorcontrib><description>Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurate evaluation of these functions. Asymptotic solutions for radiation from sources close to an electrically large conducting convex surface include the derivatives of these Fock functions as well. However, the existing formulations for the functions do not yield accurate and continuous results for their derivatives. In this letter, the existing formulations are modified to adjust the boundaries between separate intervals for efficient and accurate evaluation of the Fock functions and their derivatives, and to assess continuity across the boundaries for different numbers of terms. The modified formulations are used in the extended uniform geometrical theory of diffraction solution to predict the radiation pattern of a quarter wavelength monopole antenna, which is validated in comparison with the results of the multilevel fast multipole method (MLFMM).</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2019.2925145</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Antenna radiation patterns ; Asymptotic methods ; Boundaries ; Derivatives ; Diffraction patterns ; Electromagnetic diffraction ; electromagnetic radiation ; Formulations ; Geometrical theory of diffraction ; Impedance ; Monopole antennas ; Multipoles ; Surface impedance ; Surface waves</subject><ispartof>IEEE antennas and wireless propagation letters, 2019-08, Vol.18 (8), p.1611-1615</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3f712a3118d480c69f6a893054493e10627c920128b97813c11c7fad191c61153</citedby><cites>FETCH-LOGICAL-c293t-3f712a3118d480c69f6a893054493e10627c920128b97813c11c7fad191c61153</cites><orcidid>0000-0002-5292-8498 ; 0000-0003-4664-0444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8746123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8746123$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salau, Babajide A.</creatorcontrib><creatorcontrib>Tokgoz, Cagatay</creatorcontrib><creatorcontrib>Yilmazer, Nuri</creatorcontrib><title>On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurate evaluation of these functions. Asymptotic solutions for radiation from sources close to an electrically large conducting convex surface include the derivatives of these Fock functions as well. However, the existing formulations for the functions do not yield accurate and continuous results for their derivatives. In this letter, the existing formulations are modified to adjust the boundaries between separate intervals for efficient and accurate evaluation of the Fock functions and their derivatives, and to assess continuity across the boundaries for different numbers of terms. The modified formulations are used in the extended uniform geometrical theory of diffraction solution to predict the radiation pattern of a quarter wavelength monopole antenna, which is validated in comparison with the results of the multilevel fast multipole method (MLFMM).</description><subject>Acoustics</subject><subject>Antenna radiation patterns</subject><subject>Asymptotic methods</subject><subject>Boundaries</subject><subject>Derivatives</subject><subject>Diffraction patterns</subject><subject>Electromagnetic diffraction</subject><subject>electromagnetic radiation</subject><subject>Formulations</subject><subject>Geometrical theory of diffraction</subject><subject>Impedance</subject><subject>Monopole antennas</subject><subject>Multipoles</subject><subject>Surface impedance</subject><subject>Surface waves</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKd_gPgS8LkzlzRJ8ziKU6EwcYpPEmKWSEfXzKQV99_bsuHT3cH33d33Q-gayAyAqLtq_v48owTUjCrKIecnaAI8LzIuuTwdeyYyoJSfo4uUNoSAFJxN0Meyxauds7Vp8KJvbVeHNmEfIn4x69qMI17EsMWr0EfrEi6bkBzuAjYtvm-c7WJtTdPscWXil8NlaH_cL1710RvrLtGZN01yV8c6RW-L-9fyMauWD0_lvMosVazLmJdADQMo1nlBrFBemEIxwvNcMQdEUGnVEI4Wn0oWwCyAld6sQYEVMESbotvD3l0M371Lnd4M77bDSU2pUEIoCWJQwUFlY0gpOq93sd6auNdA9EhRjxT1SFEfKQ6em4Onds796wuZC6CM_QHU7mvf</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Salau, Babajide A.</creator><creator>Tokgoz, Cagatay</creator><creator>Yilmazer, Nuri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5292-8498</orcidid><orcidid>https://orcid.org/0000-0003-4664-0444</orcidid></search><sort><creationdate>20190801</creationdate><title>On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface</title><author>Salau, Babajide A. ; Tokgoz, Cagatay ; Yilmazer, Nuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3f712a3118d480c69f6a893054493e10627c920128b97813c11c7fad191c61153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustics</topic><topic>Antenna radiation patterns</topic><topic>Asymptotic methods</topic><topic>Boundaries</topic><topic>Derivatives</topic><topic>Diffraction patterns</topic><topic>Electromagnetic diffraction</topic><topic>electromagnetic radiation</topic><topic>Formulations</topic><topic>Geometrical theory of diffraction</topic><topic>Impedance</topic><topic>Monopole antennas</topic><topic>Multipoles</topic><topic>Surface impedance</topic><topic>Surface waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Salau, Babajide A.</creatorcontrib><creatorcontrib>Tokgoz, Cagatay</creatorcontrib><creatorcontrib>Yilmazer, Nuri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salau, Babajide A.</au><au>Tokgoz, Cagatay</au><au>Yilmazer, Nuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>18</volume><issue>8</issue><spage>1611</spage><epage>1615</epage><pages>1611-1615</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurate evaluation of these functions. Asymptotic solutions for radiation from sources close to an electrically large conducting convex surface include the derivatives of these Fock functions as well. However, the existing formulations for the functions do not yield accurate and continuous results for their derivatives. In this letter, the existing formulations are modified to adjust the boundaries between separate intervals for efficient and accurate evaluation of the Fock functions and their derivatives, and to assess continuity across the boundaries for different numbers of terms. The modified formulations are used in the extended uniform geometrical theory of diffraction solution to predict the radiation pattern of a quarter wavelength monopole antenna, which is validated in comparison with the results of the multilevel fast multipole method (MLFMM).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2019.2925145</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5292-8498</orcidid><orcidid>https://orcid.org/0000-0003-4664-0444</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2019-08, Vol.18 (8), p.1611-1615 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_proquest_journals_2269669716 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Antenna radiation patterns Asymptotic methods Boundaries Derivatives Diffraction patterns Electromagnetic diffraction electromagnetic radiation Formulations Geometrical theory of diffraction Impedance Monopole antennas Multipoles Surface impedance Surface waves |
title | On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Special%20Functions%20for%20Radiation%20From%20Sources%20Close%20to%20an%20Electrically%20Large%20Convex%20Surface&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Salau,%20Babajide%20A.&rft.date=2019-08-01&rft.volume=18&rft.issue=8&rft.spage=1611&rft.epage=1615&rft.pages=1611-1615&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2019.2925145&rft_dat=%3Cproquest_RIE%3E2269669716%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269669716&rft_id=info:pmid/&rft_ieee_id=8746123&rfr_iscdi=true |