On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface

Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2019-08, Vol.18 (8), p.1611-1615
Hauptverfasser: Salau, Babajide A., Tokgoz, Cagatay, Yilmazer, Nuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1615
container_issue 8
container_start_page 1611
container_title IEEE antennas and wireless propagation letters
container_volume 18
creator Salau, Babajide A.
Tokgoz, Cagatay
Yilmazer, Nuri
description Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurate evaluation of these functions. Asymptotic solutions for radiation from sources close to an electrically large conducting convex surface include the derivatives of these Fock functions as well. However, the existing formulations for the functions do not yield accurate and continuous results for their derivatives. In this letter, the existing formulations are modified to adjust the boundaries between separate intervals for efficient and accurate evaluation of the Fock functions and their derivatives, and to assess continuity across the boundaries for different numbers of terms. The modified formulations are used in the extended uniform geometrical theory of diffraction solution to predict the radiation pattern of a quarter wavelength monopole antenna, which is validated in comparison with the results of the multilevel fast multipole method (MLFMM).
doi_str_mv 10.1109/LAWP.2019.2925145
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2269669716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8746123</ieee_id><sourcerecordid>2269669716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3f712a3118d480c69f6a893054493e10627c920128b97813c11c7fad191c61153</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPgS8LkzlzRJ8ziKU6EwcYpPEmKWSEfXzKQV99_bsuHT3cH33d33Q-gayAyAqLtq_v48owTUjCrKIecnaAI8LzIuuTwdeyYyoJSfo4uUNoSAFJxN0Meyxauds7Vp8KJvbVeHNmEfIn4x69qMI17EsMWr0EfrEi6bkBzuAjYtvm-c7WJtTdPscWXil8NlaH_cL1710RvrLtGZN01yV8c6RW-L-9fyMauWD0_lvMosVazLmJdADQMo1nlBrFBemEIxwvNcMQdEUGnVEI4Wn0oWwCyAld6sQYEVMESbotvD3l0M371Lnd4M77bDSU2pUEIoCWJQwUFlY0gpOq93sd6auNdA9EhRjxT1SFEfKQ6em4Onds796wuZC6CM_QHU7mvf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269669716</pqid></control><display><type>article</type><title>On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface</title><source>IEEE Electronic Library (IEL)</source><creator>Salau, Babajide A. ; Tokgoz, Cagatay ; Yilmazer, Nuri</creator><creatorcontrib>Salau, Babajide A. ; Tokgoz, Cagatay ; Yilmazer, Nuri</creatorcontrib><description>Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurate evaluation of these functions. Asymptotic solutions for radiation from sources close to an electrically large conducting convex surface include the derivatives of these Fock functions as well. However, the existing formulations for the functions do not yield accurate and continuous results for their derivatives. In this letter, the existing formulations are modified to adjust the boundaries between separate intervals for efficient and accurate evaluation of the Fock functions and their derivatives, and to assess continuity across the boundaries for different numbers of terms. The modified formulations are used in the extended uniform geometrical theory of diffraction solution to predict the radiation pattern of a quarter wavelength monopole antenna, which is validated in comparison with the results of the multilevel fast multipole method (MLFMM).</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2019.2925145</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Antenna radiation patterns ; Asymptotic methods ; Boundaries ; Derivatives ; Diffraction patterns ; Electromagnetic diffraction ; electromagnetic radiation ; Formulations ; Geometrical theory of diffraction ; Impedance ; Monopole antennas ; Multipoles ; Surface impedance ; Surface waves</subject><ispartof>IEEE antennas and wireless propagation letters, 2019-08, Vol.18 (8), p.1611-1615</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3f712a3118d480c69f6a893054493e10627c920128b97813c11c7fad191c61153</citedby><cites>FETCH-LOGICAL-c293t-3f712a3118d480c69f6a893054493e10627c920128b97813c11c7fad191c61153</cites><orcidid>0000-0002-5292-8498 ; 0000-0003-4664-0444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8746123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8746123$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salau, Babajide A.</creatorcontrib><creatorcontrib>Tokgoz, Cagatay</creatorcontrib><creatorcontrib>Yilmazer, Nuri</creatorcontrib><title>On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurate evaluation of these functions. Asymptotic solutions for radiation from sources close to an electrically large conducting convex surface include the derivatives of these Fock functions as well. However, the existing formulations for the functions do not yield accurate and continuous results for their derivatives. In this letter, the existing formulations are modified to adjust the boundaries between separate intervals for efficient and accurate evaluation of the Fock functions and their derivatives, and to assess continuity across the boundaries for different numbers of terms. The modified formulations are used in the extended uniform geometrical theory of diffraction solution to predict the radiation pattern of a quarter wavelength monopole antenna, which is validated in comparison with the results of the multilevel fast multipole method (MLFMM).</description><subject>Acoustics</subject><subject>Antenna radiation patterns</subject><subject>Asymptotic methods</subject><subject>Boundaries</subject><subject>Derivatives</subject><subject>Diffraction patterns</subject><subject>Electromagnetic diffraction</subject><subject>electromagnetic radiation</subject><subject>Formulations</subject><subject>Geometrical theory of diffraction</subject><subject>Impedance</subject><subject>Monopole antennas</subject><subject>Multipoles</subject><subject>Surface impedance</subject><subject>Surface waves</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKd_gPgS8LkzlzRJ8ziKU6EwcYpPEmKWSEfXzKQV99_bsuHT3cH33d33Q-gayAyAqLtq_v48owTUjCrKIecnaAI8LzIuuTwdeyYyoJSfo4uUNoSAFJxN0Meyxauds7Vp8KJvbVeHNmEfIn4x69qMI17EsMWr0EfrEi6bkBzuAjYtvm-c7WJtTdPscWXil8NlaH_cL1710RvrLtGZN01yV8c6RW-L-9fyMauWD0_lvMosVazLmJdADQMo1nlBrFBemEIxwvNcMQdEUGnVEI4Wn0oWwCyAld6sQYEVMESbotvD3l0M371Lnd4M77bDSU2pUEIoCWJQwUFlY0gpOq93sd6auNdA9EhRjxT1SFEfKQ6em4Onds796wuZC6CM_QHU7mvf</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Salau, Babajide A.</creator><creator>Tokgoz, Cagatay</creator><creator>Yilmazer, Nuri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5292-8498</orcidid><orcidid>https://orcid.org/0000-0003-4664-0444</orcidid></search><sort><creationdate>20190801</creationdate><title>On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface</title><author>Salau, Babajide A. ; Tokgoz, Cagatay ; Yilmazer, Nuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3f712a3118d480c69f6a893054493e10627c920128b97813c11c7fad191c61153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustics</topic><topic>Antenna radiation patterns</topic><topic>Asymptotic methods</topic><topic>Boundaries</topic><topic>Derivatives</topic><topic>Diffraction patterns</topic><topic>Electromagnetic diffraction</topic><topic>electromagnetic radiation</topic><topic>Formulations</topic><topic>Geometrical theory of diffraction</topic><topic>Impedance</topic><topic>Monopole antennas</topic><topic>Multipoles</topic><topic>Surface impedance</topic><topic>Surface waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Salau, Babajide A.</creatorcontrib><creatorcontrib>Tokgoz, Cagatay</creatorcontrib><creatorcontrib>Yilmazer, Nuri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salau, Babajide A.</au><au>Tokgoz, Cagatay</au><au>Yilmazer, Nuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>18</volume><issue>8</issue><spage>1611</spage><epage>1615</epage><pages>1611-1615</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>Several high frequency asymptotic methods in electromagnetics include Fock-type functions. Acoustic hard and soft Fock functions are used as special functions in asymptotic solutions for radiation from sources on an electrically large conducting convex surface. Formulations are available for accurate evaluation of these functions. Asymptotic solutions for radiation from sources close to an electrically large conducting convex surface include the derivatives of these Fock functions as well. However, the existing formulations for the functions do not yield accurate and continuous results for their derivatives. In this letter, the existing formulations are modified to adjust the boundaries between separate intervals for efficient and accurate evaluation of the Fock functions and their derivatives, and to assess continuity across the boundaries for different numbers of terms. The modified formulations are used in the extended uniform geometrical theory of diffraction solution to predict the radiation pattern of a quarter wavelength monopole antenna, which is validated in comparison with the results of the multilevel fast multipole method (MLFMM).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2019.2925145</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5292-8498</orcidid><orcidid>https://orcid.org/0000-0003-4664-0444</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2019-08, Vol.18 (8), p.1611-1615
issn 1536-1225
1548-5757
language eng
recordid cdi_proquest_journals_2269669716
source IEEE Electronic Library (IEL)
subjects Acoustics
Antenna radiation patterns
Asymptotic methods
Boundaries
Derivatives
Diffraction patterns
Electromagnetic diffraction
electromagnetic radiation
Formulations
Geometrical theory of diffraction
Impedance
Monopole antennas
Multipoles
Surface impedance
Surface waves
title On Special Functions for Radiation From Sources Close to an Electrically Large Convex Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Special%20Functions%20for%20Radiation%20From%20Sources%20Close%20to%20an%20Electrically%20Large%20Convex%20Surface&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Salau,%20Babajide%20A.&rft.date=2019-08-01&rft.volume=18&rft.issue=8&rft.spage=1611&rft.epage=1615&rft.pages=1611-1615&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2019.2925145&rft_dat=%3Cproquest_RIE%3E2269669716%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269669716&rft_id=info:pmid/&rft_ieee_id=8746123&rfr_iscdi=true