Word Sense Disambiguation using Diffusion Kernel PCA
One of the major problems in natural language processing (NLP) is the word sense disambiguation (WSD) problem. It is the task of computationally identifying the right sense of a polysemous word based on its context. Resolving the WSD problem boosts the accuracy of many NLP focused algorithms such as...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sipal, Bilge Ozcan Sari Teke, Asena Demirci, Nurullah |
description | One of the major problems in natural language processing (NLP) is the word sense disambiguation (WSD) problem. It is the task of computationally identifying the right sense of a polysemous word based on its context. Resolving the WSD problem boosts the accuracy of many NLP focused algorithms such as text classification and machine translation. In this paper, we introduce a new supervised algorithm for WSD, that is based on Kernel PCA and Semantic Diffusion Kernel, which is called Diffusion Kernel PCA (DKPCA). DKPCA grasps the semantic similarities within terms, and it is based on PCA. These properties enable us to perform feature extraction and dimension reduction guided by semantic similarities and within the algorithm. Our empirical results on SensEval data demonstrate that DKPCA achieves higher or very close accuracy results compared to SVM and KPCA with various well-known kernels when the labeled data ratio is meager. Considering the scarcity of labeled data, whereas large quantities of unlabeled textual data are easily accessible, these are highly encouraging first results to develop DKPCA further. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2269219097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269219097</sourcerecordid><originalsourceid>FETCH-proquest_journals_22692190973</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCc8vSlEITs0rTlVwySxOzE3KTC9NLMnMz1MoLc7MSwcKpqUBWUC-d2pRXmqOQoCzIw8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tygNKxRsZmVkaGVoaWJobE6cKACWLNCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269219097</pqid></control><display><type>article</type><title>Word Sense Disambiguation using Diffusion Kernel PCA</title><source>Free E- Journals</source><creator>Sipal, Bilge ; Ozcan Sari ; Teke, Asena ; Demirci, Nurullah</creator><creatorcontrib>Sipal, Bilge ; Ozcan Sari ; Teke, Asena ; Demirci, Nurullah</creatorcontrib><description>One of the major problems in natural language processing (NLP) is the word sense disambiguation (WSD) problem. It is the task of computationally identifying the right sense of a polysemous word based on its context. Resolving the WSD problem boosts the accuracy of many NLP focused algorithms such as text classification and machine translation. In this paper, we introduce a new supervised algorithm for WSD, that is based on Kernel PCA and Semantic Diffusion Kernel, which is called Diffusion Kernel PCA (DKPCA). DKPCA grasps the semantic similarities within terms, and it is based on PCA. These properties enable us to perform feature extraction and dimension reduction guided by semantic similarities and within the algorithm. Our empirical results on SensEval data demonstrate that DKPCA achieves higher or very close accuracy results compared to SVM and KPCA with various well-known kernels when the labeled data ratio is meager. Considering the scarcity of labeled data, whereas large quantities of unlabeled textual data are easily accessible, these are highly encouraging first results to develop DKPCA further.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Analogies ; Diffusion ; Feature extraction ; Kernels ; Machine translation ; Natural language processing ; Semantics ; Word sense disambiguation ; Words (language)</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sipal, Bilge</creatorcontrib><creatorcontrib>Ozcan Sari</creatorcontrib><creatorcontrib>Teke, Asena</creatorcontrib><creatorcontrib>Demirci, Nurullah</creatorcontrib><title>Word Sense Disambiguation using Diffusion Kernel PCA</title><title>arXiv.org</title><description>One of the major problems in natural language processing (NLP) is the word sense disambiguation (WSD) problem. It is the task of computationally identifying the right sense of a polysemous word based on its context. Resolving the WSD problem boosts the accuracy of many NLP focused algorithms such as text classification and machine translation. In this paper, we introduce a new supervised algorithm for WSD, that is based on Kernel PCA and Semantic Diffusion Kernel, which is called Diffusion Kernel PCA (DKPCA). DKPCA grasps the semantic similarities within terms, and it is based on PCA. These properties enable us to perform feature extraction and dimension reduction guided by semantic similarities and within the algorithm. Our empirical results on SensEval data demonstrate that DKPCA achieves higher or very close accuracy results compared to SVM and KPCA with various well-known kernels when the labeled data ratio is meager. Considering the scarcity of labeled data, whereas large quantities of unlabeled textual data are easily accessible, these are highly encouraging first results to develop DKPCA further.</description><subject>Algorithms</subject><subject>Analogies</subject><subject>Diffusion</subject><subject>Feature extraction</subject><subject>Kernels</subject><subject>Machine translation</subject><subject>Natural language processing</subject><subject>Semantics</subject><subject>Word sense disambiguation</subject><subject>Words (language)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCc8vSlEITs0rTlVwySxOzE3KTC9NLMnMz1MoLc7MSwcKpqUBWUC-d2pRXmqOQoCzIw8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tygNKxRsZmVkaGVoaWJobE6cKACWLNCM</recordid><startdate>20190721</startdate><enddate>20190721</enddate><creator>Sipal, Bilge</creator><creator>Ozcan Sari</creator><creator>Teke, Asena</creator><creator>Demirci, Nurullah</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190721</creationdate><title>Word Sense Disambiguation using Diffusion Kernel PCA</title><author>Sipal, Bilge ; Ozcan Sari ; Teke, Asena ; Demirci, Nurullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22692190973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analogies</topic><topic>Diffusion</topic><topic>Feature extraction</topic><topic>Kernels</topic><topic>Machine translation</topic><topic>Natural language processing</topic><topic>Semantics</topic><topic>Word sense disambiguation</topic><topic>Words (language)</topic><toplevel>online_resources</toplevel><creatorcontrib>Sipal, Bilge</creatorcontrib><creatorcontrib>Ozcan Sari</creatorcontrib><creatorcontrib>Teke, Asena</creatorcontrib><creatorcontrib>Demirci, Nurullah</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sipal, Bilge</au><au>Ozcan Sari</au><au>Teke, Asena</au><au>Demirci, Nurullah</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Word Sense Disambiguation using Diffusion Kernel PCA</atitle><jtitle>arXiv.org</jtitle><date>2019-07-21</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>One of the major problems in natural language processing (NLP) is the word sense disambiguation (WSD) problem. It is the task of computationally identifying the right sense of a polysemous word based on its context. Resolving the WSD problem boosts the accuracy of many NLP focused algorithms such as text classification and machine translation. In this paper, we introduce a new supervised algorithm for WSD, that is based on Kernel PCA and Semantic Diffusion Kernel, which is called Diffusion Kernel PCA (DKPCA). DKPCA grasps the semantic similarities within terms, and it is based on PCA. These properties enable us to perform feature extraction and dimension reduction guided by semantic similarities and within the algorithm. Our empirical results on SensEval data demonstrate that DKPCA achieves higher or very close accuracy results compared to SVM and KPCA with various well-known kernels when the labeled data ratio is meager. Considering the scarcity of labeled data, whereas large quantities of unlabeled textual data are easily accessible, these are highly encouraging first results to develop DKPCA further.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2269219097 |
source | Free E- Journals |
subjects | Algorithms Analogies Diffusion Feature extraction Kernels Machine translation Natural language processing Semantics Word sense disambiguation Words (language) |
title | Word Sense Disambiguation using Diffusion Kernel PCA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Word%20Sense%20Disambiguation%20using%20Diffusion%20Kernel%20PCA&rft.jtitle=arXiv.org&rft.au=Sipal,%20Bilge&rft.date=2019-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2269219097%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269219097&rft_id=info:pmid/&rfr_iscdi=true |