A genetic algorithm approach to design aerofoils for small wind turbines
A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2134 |
creator | Komari, Saran Kumar Sreekumar, Annapoorna Ramakrishnananda, Balajee T., Rajesh Senthil Kumar |
description | A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL software. While XFOIL has a quick turnaround time, Computational Fluid Dynamics (CFD) methods are more expensive but have less assumptions. Hence, the suggested GA methodology can be used to quickly produce reasonably good test candidates for shortlisting the aerofoils for computational study. The best four aerofoils before GA and the best four after GA are taken and the top four performers from this pool are identified using CFD results. The results of the CFD study show that while three of the aerofoils after GA have better fitness values than the original pool, one from the original pool is still a comparatively good performer. |
doi_str_mv | 10.1063/1.5120194 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2269173050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269173050</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-ba40b8a5b7aa11b1a082c08ea6131aa981dda34c34d34acc04f1ca808152b803</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKcHv0HAm9CZN0nb9DiGOmHgZQdv4W2abhldU5NU8du7sYE3T8_l9_zhIeQe2AxYIZ5glgNnUMkLMoE8h6wsoLgkE8YqmXEpPq7JTYw7xnhVlmpClnO6sb1NzlDsNj64tN1THIbg0Wxp8rSx0W16ijb41rsu0tYHGvfYdfTb9Q1NY6hdb-MtuWqxi_burFOyfnleL5bZ6v31bTFfZQPPRcpqlKxWmNclIkANyBQ3TFksQABipaBpUEgjZCMkGsNkCwYVU5DzWjExJQ-n2MPCz9HGpHd-DP2hUXNeVFAKlh-pxxMVjUuYnO_1ENwew4_-8kGDPp-kh6b9Dwamj6_-GcQvKLFo9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2269173050</pqid></control><display><type>conference_proceeding</type><title>A genetic algorithm approach to design aerofoils for small wind turbines</title><source>AIP Journals Complete</source><creator>Komari, Saran Kumar ; Sreekumar, Annapoorna ; Ramakrishnananda, Balajee ; T., Rajesh Senthil Kumar</creator><contributor>Syriac, Ruby Maria ; Shanmughom, Rupesh</contributor><creatorcontrib>Komari, Saran Kumar ; Sreekumar, Annapoorna ; Ramakrishnananda, Balajee ; T., Rajesh Senthil Kumar ; Syriac, Ruby Maria ; Shanmughom, Rupesh</creatorcontrib><description>A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL software. While XFOIL has a quick turnaround time, Computational Fluid Dynamics (CFD) methods are more expensive but have less assumptions. Hence, the suggested GA methodology can be used to quickly produce reasonably good test candidates for shortlisting the aerofoils for computational study. The best four aerofoils before GA and the best four after GA are taken and the top four performers from this pool are identified using CFD results. The results of the CFD study show that while three of the aerofoils after GA have better fitness values than the original pool, one from the original pool is still a comparatively good performer.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5120194</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Airfoils ; Computational fluid dynamics ; Fitness ; Genetic algorithms ; Methodology ; Simulation ; Wind profiles ; Wind turbines</subject><ispartof>AIP conference proceedings, 2019, Vol.2134 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5120194$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Syriac, Ruby Maria</contributor><contributor>Shanmughom, Rupesh</contributor><creatorcontrib>Komari, Saran Kumar</creatorcontrib><creatorcontrib>Sreekumar, Annapoorna</creatorcontrib><creatorcontrib>Ramakrishnananda, Balajee</creatorcontrib><creatorcontrib>T., Rajesh Senthil Kumar</creatorcontrib><title>A genetic algorithm approach to design aerofoils for small wind turbines</title><title>AIP conference proceedings</title><description>A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL software. While XFOIL has a quick turnaround time, Computational Fluid Dynamics (CFD) methods are more expensive but have less assumptions. Hence, the suggested GA methodology can be used to quickly produce reasonably good test candidates for shortlisting the aerofoils for computational study. The best four aerofoils before GA and the best four after GA are taken and the top four performers from this pool are identified using CFD results. The results of the CFD study show that while three of the aerofoils after GA have better fitness values than the original pool, one from the original pool is still a comparatively good performer.</description><subject>Aerodynamics</subject><subject>Airfoils</subject><subject>Computational fluid dynamics</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>Methodology</subject><subject>Simulation</subject><subject>Wind profiles</subject><subject>Wind turbines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LwzAYxoMoOKcHv0HAm9CZN0nb9DiGOmHgZQdv4W2abhldU5NU8du7sYE3T8_l9_zhIeQe2AxYIZ5glgNnUMkLMoE8h6wsoLgkE8YqmXEpPq7JTYw7xnhVlmpClnO6sb1NzlDsNj64tN1THIbg0Wxp8rSx0W16ijb41rsu0tYHGvfYdfTb9Q1NY6hdb-MtuWqxi_burFOyfnleL5bZ6v31bTFfZQPPRcpqlKxWmNclIkANyBQ3TFksQABipaBpUEgjZCMkGsNkCwYVU5DzWjExJQ-n2MPCz9HGpHd-DP2hUXNeVFAKlh-pxxMVjUuYnO_1ENwew4_-8kGDPp-kh6b9Dwamj6_-GcQvKLFo9w</recordid><startdate>20190806</startdate><enddate>20190806</enddate><creator>Komari, Saran Kumar</creator><creator>Sreekumar, Annapoorna</creator><creator>Ramakrishnananda, Balajee</creator><creator>T., Rajesh Senthil Kumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190806</creationdate><title>A genetic algorithm approach to design aerofoils for small wind turbines</title><author>Komari, Saran Kumar ; Sreekumar, Annapoorna ; Ramakrishnananda, Balajee ; T., Rajesh Senthil Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-ba40b8a5b7aa11b1a082c08ea6131aa981dda34c34d34acc04f1ca808152b803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Airfoils</topic><topic>Computational fluid dynamics</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>Methodology</topic><topic>Simulation</topic><topic>Wind profiles</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komari, Saran Kumar</creatorcontrib><creatorcontrib>Sreekumar, Annapoorna</creatorcontrib><creatorcontrib>Ramakrishnananda, Balajee</creatorcontrib><creatorcontrib>T., Rajesh Senthil Kumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komari, Saran Kumar</au><au>Sreekumar, Annapoorna</au><au>Ramakrishnananda, Balajee</au><au>T., Rajesh Senthil Kumar</au><au>Syriac, Ruby Maria</au><au>Shanmughom, Rupesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A genetic algorithm approach to design aerofoils for small wind turbines</atitle><btitle>AIP conference proceedings</btitle><date>2019-08-06</date><risdate>2019</risdate><volume>2134</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL software. While XFOIL has a quick turnaround time, Computational Fluid Dynamics (CFD) methods are more expensive but have less assumptions. Hence, the suggested GA methodology can be used to quickly produce reasonably good test candidates for shortlisting the aerofoils for computational study. The best four aerofoils before GA and the best four after GA are taken and the top four performers from this pool are identified using CFD results. The results of the CFD study show that while three of the aerofoils after GA have better fitness values than the original pool, one from the original pool is still a comparatively good performer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5120194</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2134 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2269173050 |
source | AIP Journals Complete |
subjects | Aerodynamics Airfoils Computational fluid dynamics Fitness Genetic algorithms Methodology Simulation Wind profiles Wind turbines |
title | A genetic algorithm approach to design aerofoils for small wind turbines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20genetic%20algorithm%20approach%20to%20design%20aerofoils%20for%20small%20wind%20turbines&rft.btitle=AIP%20conference%20proceedings&rft.au=Komari,%20Saran%20Kumar&rft.date=2019-08-06&rft.volume=2134&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5120194&rft_dat=%3Cproquest_scita%3E2269173050%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269173050&rft_id=info:pmid/&rfr_iscdi=true |