A genetic algorithm approach to design aerofoils for small wind turbines

A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Komari, Saran Kumar, Sreekumar, Annapoorna, Ramakrishnananda, Balajee, T., Rajesh Senthil Kumar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2134
creator Komari, Saran Kumar
Sreekumar, Annapoorna
Ramakrishnananda, Balajee
T., Rajesh Senthil Kumar
description A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL software. While XFOIL has a quick turnaround time, Computational Fluid Dynamics (CFD) methods are more expensive but have less assumptions. Hence, the suggested GA methodology can be used to quickly produce reasonably good test candidates for shortlisting the aerofoils for computational study. The best four aerofoils before GA and the best four after GA are taken and the top four performers from this pool are identified using CFD results. The results of the CFD study show that while three of the aerofoils after GA have better fitness values than the original pool, one from the original pool is still a comparatively good performer.
doi_str_mv 10.1063/1.5120194
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2269173050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269173050</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-ba40b8a5b7aa11b1a082c08ea6131aa981dda34c34d34acc04f1ca808152b803</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKcHv0HAm9CZN0nb9DiGOmHgZQdv4W2abhldU5NU8du7sYE3T8_l9_zhIeQe2AxYIZ5glgNnUMkLMoE8h6wsoLgkE8YqmXEpPq7JTYw7xnhVlmpClnO6sb1NzlDsNj64tN1THIbg0Wxp8rSx0W16ijb41rsu0tYHGvfYdfTb9Q1NY6hdb-MtuWqxi_burFOyfnleL5bZ6v31bTFfZQPPRcpqlKxWmNclIkANyBQ3TFksQABipaBpUEgjZCMkGsNkCwYVU5DzWjExJQ-n2MPCz9HGpHd-DP2hUXNeVFAKlh-pxxMVjUuYnO_1ENwew4_-8kGDPp-kh6b9Dwamj6_-GcQvKLFo9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2269173050</pqid></control><display><type>conference_proceeding</type><title>A genetic algorithm approach to design aerofoils for small wind turbines</title><source>AIP Journals Complete</source><creator>Komari, Saran Kumar ; Sreekumar, Annapoorna ; Ramakrishnananda, Balajee ; T., Rajesh Senthil Kumar</creator><contributor>Syriac, Ruby Maria ; Shanmughom, Rupesh</contributor><creatorcontrib>Komari, Saran Kumar ; Sreekumar, Annapoorna ; Ramakrishnananda, Balajee ; T., Rajesh Senthil Kumar ; Syriac, Ruby Maria ; Shanmughom, Rupesh</creatorcontrib><description>A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL software. While XFOIL has a quick turnaround time, Computational Fluid Dynamics (CFD) methods are more expensive but have less assumptions. Hence, the suggested GA methodology can be used to quickly produce reasonably good test candidates for shortlisting the aerofoils for computational study. The best four aerofoils before GA and the best four after GA are taken and the top four performers from this pool are identified using CFD results. The results of the CFD study show that while three of the aerofoils after GA have better fitness values than the original pool, one from the original pool is still a comparatively good performer.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5120194</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Airfoils ; Computational fluid dynamics ; Fitness ; Genetic algorithms ; Methodology ; Simulation ; Wind profiles ; Wind turbines</subject><ispartof>AIP conference proceedings, 2019, Vol.2134 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5120194$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Syriac, Ruby Maria</contributor><contributor>Shanmughom, Rupesh</contributor><creatorcontrib>Komari, Saran Kumar</creatorcontrib><creatorcontrib>Sreekumar, Annapoorna</creatorcontrib><creatorcontrib>Ramakrishnananda, Balajee</creatorcontrib><creatorcontrib>T., Rajesh Senthil Kumar</creatorcontrib><title>A genetic algorithm approach to design aerofoils for small wind turbines</title><title>AIP conference proceedings</title><description>A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL software. While XFOIL has a quick turnaround time, Computational Fluid Dynamics (CFD) methods are more expensive but have less assumptions. Hence, the suggested GA methodology can be used to quickly produce reasonably good test candidates for shortlisting the aerofoils for computational study. The best four aerofoils before GA and the best four after GA are taken and the top four performers from this pool are identified using CFD results. The results of the CFD study show that while three of the aerofoils after GA have better fitness values than the original pool, one from the original pool is still a comparatively good performer.</description><subject>Aerodynamics</subject><subject>Airfoils</subject><subject>Computational fluid dynamics</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>Methodology</subject><subject>Simulation</subject><subject>Wind profiles</subject><subject>Wind turbines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LwzAYxoMoOKcHv0HAm9CZN0nb9DiGOmHgZQdv4W2abhldU5NU8du7sYE3T8_l9_zhIeQe2AxYIZ5glgNnUMkLMoE8h6wsoLgkE8YqmXEpPq7JTYw7xnhVlmpClnO6sb1NzlDsNj64tN1THIbg0Wxp8rSx0W16ijb41rsu0tYHGvfYdfTb9Q1NY6hdb-MtuWqxi_burFOyfnleL5bZ6v31bTFfZQPPRcpqlKxWmNclIkANyBQ3TFksQABipaBpUEgjZCMkGsNkCwYVU5DzWjExJQ-n2MPCz9HGpHd-DP2hUXNeVFAKlh-pxxMVjUuYnO_1ENwew4_-8kGDPp-kh6b9Dwamj6_-GcQvKLFo9w</recordid><startdate>20190806</startdate><enddate>20190806</enddate><creator>Komari, Saran Kumar</creator><creator>Sreekumar, Annapoorna</creator><creator>Ramakrishnananda, Balajee</creator><creator>T., Rajesh Senthil Kumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190806</creationdate><title>A genetic algorithm approach to design aerofoils for small wind turbines</title><author>Komari, Saran Kumar ; Sreekumar, Annapoorna ; Ramakrishnananda, Balajee ; T., Rajesh Senthil Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-ba40b8a5b7aa11b1a082c08ea6131aa981dda34c34d34acc04f1ca808152b803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Airfoils</topic><topic>Computational fluid dynamics</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>Methodology</topic><topic>Simulation</topic><topic>Wind profiles</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komari, Saran Kumar</creatorcontrib><creatorcontrib>Sreekumar, Annapoorna</creatorcontrib><creatorcontrib>Ramakrishnananda, Balajee</creatorcontrib><creatorcontrib>T., Rajesh Senthil Kumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komari, Saran Kumar</au><au>Sreekumar, Annapoorna</au><au>Ramakrishnananda, Balajee</au><au>T., Rajesh Senthil Kumar</au><au>Syriac, Ruby Maria</au><au>Shanmughom, Rupesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A genetic algorithm approach to design aerofoils for small wind turbines</atitle><btitle>AIP conference proceedings</btitle><date>2019-08-06</date><risdate>2019</risdate><volume>2134</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A genetic algorithm (GA) methodology to design better site specific or wind profile specific aerofoils for small wind turbines starting from an initial pool of aerofoils is described. The GA methodology generates new aerofoils and quickly evaluates the fitness function of every aerofoil using XFOIL software. While XFOIL has a quick turnaround time, Computational Fluid Dynamics (CFD) methods are more expensive but have less assumptions. Hence, the suggested GA methodology can be used to quickly produce reasonably good test candidates for shortlisting the aerofoils for computational study. The best four aerofoils before GA and the best four after GA are taken and the top four performers from this pool are identified using CFD results. The results of the CFD study show that while three of the aerofoils after GA have better fitness values than the original pool, one from the original pool is still a comparatively good performer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5120194</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2134 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2269173050
source AIP Journals Complete
subjects Aerodynamics
Airfoils
Computational fluid dynamics
Fitness
Genetic algorithms
Methodology
Simulation
Wind profiles
Wind turbines
title A genetic algorithm approach to design aerofoils for small wind turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20genetic%20algorithm%20approach%20to%20design%20aerofoils%20for%20small%20wind%20turbines&rft.btitle=AIP%20conference%20proceedings&rft.au=Komari,%20Saran%20Kumar&rft.date=2019-08-06&rft.volume=2134&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5120194&rft_dat=%3Cproquest_scita%3E2269173050%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269173050&rft_id=info:pmid/&rfr_iscdi=true